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Abstract. This work addresses the problem of fast, online segmenta-
tion of moving objects in video. We pose this as a discriminative on-
line semi-supervised appearance learning task, where supervising labels
are autonomously generated by a motion segmentation algorithm. The
computational complexity of the approach is significantly reduced by
performing learning and classification on oversegmented image regions
(superpixels), rather than per pixel. In addition, we further exploit the
sparse trajectories from the motion segmentation to obtain a simple
model that encodes the spatial properties and location of objects at each
frame. Fusing these complementary cues produces good object segmen-
tations at very low computational cost. In contrast to previous work,
the proposed approach (1) performs segmentation on-the-fly (allowing
for applications where data arrives sequentially), (2) has no prior model
of object types or ‘objectness’, and (3) operates at significantly reduced
computational cost. The approach and its ability to learn, disambiguate
and segment the moving objects in the scene is evaluated on a number
of benchmark video sequences.

1 Introduction

The task of segmenting moving objects in a sequence of images is a fundamen-
tal computer vision problem. It’s applications include data compression, visual
effects, tracking, object and activity recognition, and video annotation and re-
trieval. This work addresses the problem of fast, online segmentation of moving
objects in video. We pose this as a discriminative online semi-supervised ap-
pearance learning task, where supervising labels are autonomously generated by
a motion segmentation algorithm, applied on sparse point trajectories from in-
terest point tracking. The motion segmentation weakly (and sometimes noisily)
labels the moving objects in the scene, and an appearance classifier gradually
learns their appearance. In addition to motion (sparse point trajectories) and
appearance cues, we also incorporate (1) an efficient shape-location prior and
(2) boundary information (from an initial image oversegmentation), to regular-
ize and refine the learning process. Specifically, the learned appearance classifier
is given supervising labels from two sources, first from the sparse segmented
point trajectories (called the sparse update) and second by sampling the final
segmentation obtained after fusing appearance, shape-location and boundary
cues (dense update).
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Fig. 1. Basic idea of online semi-supervised learning for segmenting moving objects.

Our method does not have a pre-determined or explicit notion of what an
object looks like in the video. Instead its appearance is learned on-the-fly. By
avoiding specific assumptions and strict object models, our method is generic.
Our main contribution is an autonomous, semi-supervised online learning ap-
proach for fast and dense segmentation of moving objects in a video sequence
from very sparse trajectories. In contrast to previous work, our proposed method
(1) performs segmentation on-the-fly, allowing for applications where the data
arrives sequentially; (2) has no prior model of object types or ‘objectness’ and
(3) operates at a significantly reduced computational cost. We analyze the com-
ponents of our algorithm and experiment on challenging video sequences that
demonstrate its performance and utility. An overview of the basic idea of online
semi-supervised learning for segmenting moving objects is illustrated in Fig. 1.

2 Related Work

Dense segmentation of moving objects in monocular video sequences is an area
that has received considerable attention over the years. Earlier approaches, such
as [1–3] rely on the assumption that the background is either stationary or has
a simple model, and that only the object of interest is moving. In [4] sparse
color features are extracted and a Markov Random Field (MRF) model is used
to infuse smoothness for segmentation of videos with little background motion.
An improvement to [2] was introduced by [5] using a classifier-based learning
approach to deal with a certain degree of background motion and situations
where the foreground object is almost stationary. Unlike the proposed approach,
all these methods use batch rather than online learning. Solutions such as [6]
address the problem of object segmentation by using optical flow for estimating
the motion of the scene. Their method, although robust under significant camera
motion, cannot handle multiple objects and the optical flow computation makes
it unsuitable for real-time applications.
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Recently, [7] presented an unsupervised learning approach, which is suited
to moving object segmentation when there is very little motion from the ob-
ject and the camera. Unfortunately, their method is computationally expensive
due to the dense optical flow calculation and the mixture of Gaussians (MoG)
fitting of the appearance model. In addition, the whole video must be made
available for offline batch processing. In [8] Lee et al. extract a series of key-
frames in which “object-like” regions are more prominent. They achieve this by
using a boundary preserving local feature that has been trained on a database
of ground truth object segmentations. Matching these features in the image pro-
duces a shape prior that is combined with a basic color MoG model and fused
inside a spatio-temporal MRF that is optimized via binary cuts. The method
shows promise on realistic datasets, however computationally it is costly; the
shape features require extensive training, and computing the prior takes several
minutes per frame. Another notable example is the work by [9], on dynamic
scenes with rapidly moving objects. Their method clusters pixels together based
on multi-scale optical flow, combined with local illumination features in an MRF.
Although their method is able to cope very well with highly dynamic objects,
(due to motion blur or absence of texture), they can only return a small number
of dense segments (object sub-parts) in each image. Brox et al. [10] described an
unsupervised method for the segmentation of semi-dense trajectories from the
analysis of motion cues over long image sequences. However, they use trajecto-
ries provided by [11] which are expensive to obtain. Also, since it relies on 2D
motion information, it cannot disambiguate between 3D objects directly, so the
authors have to use additional heuristics for merging.

The object segmentation method in [12] builds on previous research from [10].
They use semi-dense motion segmentation to generate a good initial labeling of
the moving objects in the scene. Then a very accurate (and computationally ex-
pensive) multi-level super-pixel generation method from [13] is carried out to give
strong shape priors that preserve the main borders between objects. Super-pixels
are labeled and merged using the motion segmentation tracks and a multi-level
variational approach. The results presented in [12] are very good and can eas-
ily deal with multiple objects. Due to the very costly components, this method
is strictly an off-line approach. Even though our solution has certain similari-
ties with the reviewed approaches, it has some unique properties. It is the only
approach where a discriminative model of appearance is learned and updated on-
line, supervised by sparse 3D motion features and regularized by shape-location
cues and boundary sensitive region segmentations. No costly optimization step
is required at the end, and we do not to need to estimate expensive generative
models. In this paper, we have restricted the reviewed literature to methods
dealing with segmentation of moving objects in video sequences. There is also
the related and somewhat overlapping area of dense object segmentation for
tracking, with a large number of highly relevant publications. Two notable such
examples are the Hough based method by [14] and the older non-parametric ap-
proach by [15]. However, dense segmentation methods for tracking applications
have different, often more relaxed performance criteria. For example, they tend
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to focus on an object centroid or bounding box and not on accurate boundaries
that conform to the objects’ shapes. Furthermore, they often deal with 2 class
foreground/background segmentation and usually require some user-based ini-
tialisation. These are the main reasons why we chose to restrict our attention to
video object segmentation methods.

3 Our approach

We propose an online approach, where segmentations are made at each frame
based only on information from previous frames and a small local temporal win-
dow of size N (in our experiments, N = 10 frames). For each temporal window,
point tracking yields a set of sparse trajectories {xsparse

i }Ni=1
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sparse
i =

{x1

j , x
2

j}
k
j=1

is the set of sparse points in the ith frame in the temporal window,
and k is the number of trajectories. Next, an unsupervised motion segmentation
algorithm assigns labels to trajectories, giving set S = {xsparse

i ,y
sparse
i }Ni=1

,
where y

sparse
i = {yj}

k
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, is the set of sparse labels in the ith frame in the
temporal window, that identifies object assignment. See §3.1 for details.

This set S, of sparse point-label pairs then drives the learning process. La-
beled appearance samples (see §3.4) extracted from the point sets in S provide
an initial sparse training set for a discriminative online appearance classifier.
Additionally, a basic shape-location model for each object is built directly from
S (see §3.2).

To avoid the high computational complexity of performing learning and clas-
sification at the pixel level, and also to incorporate important boundary informa-
tion, we employ an efficient multi-scale image oversegmentation. Discriminative
learning and classification is carried out at the segmented region level, yielding
boundary sensitive appearance classifications. (See §3.3).

The fusion of these complementary cues (motion, shape-location and bound-
ary sensitive appearance) yields segmented objects. Segmentations are then used
to bootstrap the classifier with dense appearance samples, resulting in greatly im-
proved segmentations in subsequent frames. The cue fusion and semi-supervised
online appearance classifier learning algorithm are detailed in §3.5.

3.1 Motion Segmentation

One of the main components of our proposed approach is a fast, unsupervised
and non-parametric 3D motion segmentation algorithm. This is used in order to:
1) provide labeled samples for learning the appearance for each moving object;
2) provide labeled spatial coordinates for extraction of a basic shape-location
model for every object in each frame.

Since we require a motion segmentation algorithm that is both fast and
reliable, we choose the LCV method by [16], for which there is available computer
code. The LCV method takes as input a point trajectory matrix and outputs
a column vector of labels that separate these trajectories into different objects
(see Fig. 2(a)). Point trajectories are obtained by first computing a small number
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of “Good Features to Track” [17]. These are tracked with a feature tracker [18]
using a “track-retrack” scheme, whereby points are tracked from one frame to the
next, and back again. Trajectories are rejected if there is sufficient disagreement
in their initial and final point locations. Tracking is performed over a small
temporal window and only trajectories that persist across the whole window are
retained.

The overall process yields an extremely sparse set of reliable labeled point
trajectories over each temporal window (approximately 0.05% of image pixels,
compared to 3% in [10]). The increased sparsity of points greatly reduces com-
putational cost, but necessitates a semi-supervised learning algorithm that can
exploit both labeled data (sparse points) and unlabeled data (all unlabeled pix-
els).

3.2 Shape-location cues

It is important to use a basic shape-location model to weakly regularize the
appearance learning process. An estimate of the shape, location and scale of
each object is computed in every frame using a Kernel Density Estimate (KDE)
[19] based on the sparse point-label pairs output by the motion segmentation,
{xsparse,ysparse}. For each object, the 2D spatial distribution is estimated from
the sparse point set associated with that object label. The set Ω = {1 : ysparse

i =
ω} is the set of indices for which the label is ω. The KDE for objects with label
ω is defined as:

f̂H(x) =
1

‖Ω‖

∑

i∈Ω

KH (x− xi) , (1)

and we use a Gaussian kernel with an automatically adapted bandwidth param-
eter H [20]. The shape KDE is estimated on sparse points and can be sampled
densely to obtain a dense confidence map, Smap. This model is robust to out-
liers that may occur due to motion segmentation errors and, in comparison to
the shape priors computed in other works (c.f. [8]) it is highly computationally
efficient. Additionally, the model is multi-modal, which is necessary for mod-
eling, for instance, the background distribution. See Fig. 2(b) for an example
shape-location model.

3.3 Multi-scale Oversegmentation

To avoid the high computational complexity of performing learning and classi-
fication at the pixel level, and also to incorporate important boundary informa-
tion, we employ an efficient multi-scale image oversegmentation. Discriminative
learning and classification is then carried out at the segmented region level. Fus-
ing the region classification confidences across all scales yields boundary sensitive
per-pixel labeling, and per-pixel classification confidences. By merging classifica-
tion confidences of oversegmentations at multiple scales, region boundaries that
are consistent across many scales are well emphasized, while those boundaries
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3.5 Semi-Supervised Online Appearance Classifier

The unsupervised motion segmentation algorithm (§3.1) provides sparse point-
label pairs {xsparse

i ,y
sparse
i }Ni=1

for a semi-supervised online appearance classifier
learning algorithm, where N is the number of labeled trajectories. The algorithm
uses an Online Random Forest (ORF) classifier as the embedded classifier. Ran-
dom Forests are an ensemble of randomized decision trees learnt from random
bootstrap samples of the original data. In [23] the classifier was implemented as
an online learning algorithm. Although experiments with other online classifiers
(e.g. online boosting) produce similar results, the ORF is highly computationally
efficient both in update and evaluate steps.

There are two classifier update steps in our algorithm, a sparse update and
a dense update. The sparse update is performed at each of the M scales of
the oversegmentation, using the training set ASparse = {Φsparse

i,k ,y
sparse
i }Ni=1

,

for k=1 : M , where {Φsparse
i,k }Ni=1

, denotes the appearance features extracted

from the regions at scale k containing the points {xsparse
i }Ni=1

. For each scale,
the mean appearance of each labeled superpixel (those superpixels containing a
tracked point labeled by the motion segmentation) is computed, and the classi-
fier is updated with these labeled samples. Superpixels that contain labels from
multiple classes are not used in the update, as they are likely to span multi-
ple objects, these superpixels occur commonly at coarser scales. Also at each
scale, all superpixels (including the unlabeled ones) are then evaluated by the
classifier yielding multi-scale boundary sensitive appearance confidence maps.
For the special case of superpixels that contain multiple different class labels,
the confidence is set equal for each class, so that it has no impact on the final
merged result. Still at each scale, the multi-scale shape-location and appearance
classification confidence maps, (Sk

map and Ak
map respectively) are fused with a

simple linear combination sum1:

Dk = α ·Ak
map + (1− α) · Sk

map (2)

The next step is to combine the fused confidence maps, Dk, from each scale,
k, into a single confidence map. This is computed as the mean, at each pixel, of
the fused confidence maps from each scale. D = 1

M

∑M

k=1
Dk. As D is computed

as a per-pixel average, and due to the inconsistency of superpixel boundaries
across scales, confidence boundaries in D are blurred. We therefore compute
boundary sensitive version of D, at the finest superpixel level, by averaging the
confidence values of D within each superpixel at the finest scale. This results in
a confidence map that combines the classification results at all scales, regular-
ized by the shape model, represented at the finest superpixel level. Dense labels,
for each superpixel at the finest scale, are finally obtained by thresholding the
combined confidence map. The dense update step updates the classifier with the
training set ADense={Φdense

i ,ydense
i }MMAX

i=1
, where the dense labels are obtained

from the final segmentation result from each frame. MMAX is the number of

1 All parameters settings are detailed in section §4
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Algorithm 1 Online Moving Object Segmentation

Inputs: Sequence of images
for all Temporal windows of N frames do

Track: Obtain point trajectories, xsparse
i

Motion Segment: Obtain trajectory labels, ysparse
i

Over Segment: Obtain multi-scale superpixels.
Sample Appearance: Sample labeled superpixels at each scale
Sparse Update: Update classifier from ASparse

for i = 1 to N do

for k = 1 to M do

Evaluate Classifier: Obtain appearance confidence map, Ak
map

Shape and Location: Obtain shape and location confidence maps, Sk
map

Cue Fusion: As in Eq. 2
end for

Combine Scales: Compute per pixel average of fused confidence maps D =
1

M

∑M

k=1
D

k

Compute Superpixel Confidence Map: Compute average confidence values
of D within each superpixel at the finest scale
Threshold: Threshold confidence map to obtain labels for each superpixel at
finest scale
Dense Update: Update classifier from ADense

end for

end for

Outputs: Moving object segmentations in all images

superpixels at the finest scale, and {Φdense
i }MMAX

i=1
are the mean appearance fea-

tures in each superpixel at the finest scale. If the update were performed prior
to the fusion step, the algorithm would be self-training i.e. a ‘single-view weakly
supervised algorithm’ [24]. Such algorithms can suffer from reinforcing feed-
back errors, i.e. initial misclassifications are included in the bootstrap training
data, resulting in ever increasing classification errors. By updating the classifier
with the post-fusion segmentation result, the learning process utilizes multiple
views (appearance, shape) of the data. This multi-view approach constrains the
learning process by only bootstrapping the classifier with data where there is
agreement between the views. The complete online segmentation algorithm is
detailed in Algorithm 1.

4 Implementation Details

All timings quoted are based on a 64bit, 2.83 GHz Quad Core CPU with 4GB
RAM.

Tracking: Tracking over a 10 frame temporal window of 640×480 images
takes approximately 0.2 sec and, depending on scene content, returns between
100 and 1000 trajectories. A track-retrack threshold of 0.3 pixels is used to reject
unreliable trajectories.
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in our method with that of a state-of-the-art method [12]. Table 1 shows both
the runtime, and the result of the three main processes: (1) Segmented Trajecto-
ries (includes interest point tracking and clustering trajectories over a 10 frame
window), (2) oversegmentation/superpixel computation, (3) object segmentation
(for both methods, this includes all processes not carried out in process (1) or
(2)). As can be seen, the computational cost for all the processes of our method
are considerably lower than for [12]. It is also evident that both the segmented
trajectories, and the superpixels used by [12] are closer to the final solution than
our results. In fact the coarsest level superpixels obtained by [13] are already
very close to the final solution. Note that the final segmentation results are for
the 1st frame of the sequence, and due to the continuing updates of the appear-
ance classifier, results on later images in the sequence are generally improved for
our method. The times quoted are for the images shown, but are representative
of all tested sequences.

Fig. 3 shows the temporal evolution of object segmentations for three chal-
lenging sequences from the Berkeley Motion Segmentation Dataset [10]. It can
be seen that, given a very poor initial discrimination between object and back-
ground appearance, by the end of the sequences, the classifier has learnt to
effectively discriminate the object.

Fig. 3. Temporal evolution of object segmentations that illustrate the online learn-
ing aspect of the method. The three rows contain the Marple7, Marple11 and Tennis
sequences respectively from [10].

Figs. 4, 5 and 6 show qualitative and quantitative comparisons to the vari-
ational approach of Ochs & Brox [12]. For each sequence, a labeling error is
computed on each ground-truth frame. The error is an object size normalised
sum of misclassified pixels. The normalization is obtained by dividing the mis-
classified pixel sum for each method, by the misclassified pixel sum of a trivial
segmentation, that labels all pixels with one label.

Fig. 4 shows results on the parachute sequence. Fine details and object board-
ers are less accurate due to the higher accuracy of [13] over [21], resulting in a
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Fig. 7. Some additional examples that illustrate the final segmentation results of our
method on video sequences.
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