2. SYNTHESIS OF ANALOG FILTERS
2.1 a)
$$|H_{gpn}(in)|^{2} = \frac{1}{1 + \varepsilon^{2} \left(\frac{m}{m}\right)^{2}N}$$
 where $\varepsilon = \sqrt{10^{0.14} \text{sensen}} - \frac{1}{1}$
 $A_{max} = -20 \log(|H(in_{x})_{0}|) = 10 \log(1 + \varepsilon^{2} (\frac{m}{m})^{2}N)$
 $A_{max} = -20 \log(|H(in_{x})_{0}|) = 10 \log(1 + \varepsilon^{2} (\frac{m}{m})^{2}N)$
 $A_{max} = -20 \log(|H(in_{x})_{0}|) = 10 \log(1 + \varepsilon^{2} (\frac{m}{m})^{2}N)$
 $A_{max} = -20 \log(|H(in_{x})_{0}|) = 10 \log(1 + \varepsilon^{2} (\frac{m}{m})^{2}N)$
 $P_{2}^{2} (\frac{m}{m_{x}})^{2} = \frac{10^{0.14} \text{max} - 1}{1 + \varepsilon^{2} (\frac{m}{m})^{2}N} = N \approx \frac{\log(\frac{10^{0.14} \text{max} - 1}{2\log(\frac{m}{m})^{2}})$
 $P_{3}(y)D(-s) = 1 + \varepsilon^{2} (\frac{m}{m})^{2}N = 0 = \varepsilon^{2} (\frac{1}{\sqrt{m}})^{2}N = -1 = e^{i(2k+1)\pi}$
 $\varepsilon^{1/\sqrt{N}} (\frac{s}{m}) = e^{i(2k+1)\pi/2N} = s_{\delta,k} = jn_{0}e^{1/\sqrt{N}} e^{i(2k+1)\pi/2N}$
 $P_{3}(y)D(-s) = 1 + \varepsilon^{2} (\frac{m}{m})^{2}N = 0 = \sigma_{0}e^{\frac{1}{N}} we get$
 $A(r_{0p}) = 10 \log(1 + \varepsilon^{2} (\frac{m}{m})^{2})^{2} = 10 \log\left(1 - p^{2}\right)$. For example, $p = 5\% \ll A_{max} = 0.0087096 \text{ dB}$
2.2 $A_{max} = 10 \log(1 + \varepsilon^{2} (\frac{m}{m})^{2})^{2} = 10 \log\left(1 + \varepsilon^{2} \varepsilon^{2} + 10 \log\left(1 + \varepsilon^{2} (\frac{m}{m_{e}})^{2}\right)^{2}$
 $= 10 \log\left(1 + \varepsilon^{2} (\frac{1}{m_{e}})^{2}\right) = 10 \log\left(1 + \varepsilon^{2} \varepsilon^{2} + 10 \log\left(2 + \varepsilon^{2} + \frac{1}{m_{e}}\right)^{2}$
 $A(r_{0p}) = \frac{1}{\sqrt{1 + \varepsilon^{2} (\frac{1}{m_{e}}}\right)^{2}} = \left(1 + \varepsilon^{2} (\frac{m}{m_{e}}}\right)^{2} \frac{1}{(H(m))^{2}} = |G(f(m)|^{2} = 1 + \varepsilon^{2} (\frac{m}{m_{e}}}\right)^{2}$
which we recognize as a Taylor sense. $F(x) = F(0) + \frac{F(0)}{1}x + \frac{F^{T}(0)}{2}x^{2} + \dots + \frac{F^{T}(0)}{m_{e}}x^{4} + \dots$ were $x = \omega/\sigma_{e}$. Hence, the first $2N$ -1 derivatives are zero for $x = 0$.
2.4 $La(h)$ and $d(t)$ by the impulse and step responses, respectively, of a filter H(tr). Scale the first $H(y_{0}) = \frac{1}{2\pi n} \int H(y_{0}) e^{i\omega}(\alpha) = \frac{1}{2\pi n} \int H(y_{0$

2.7 2.6 2.8 $s_{p2} = -1$ We get $\frac{dT}{dx} = \frac{n \sin(n \arccos(x))}{\sqrt{1 - x^2}}$ which is of the form 0/0 at x =1. However, the other extreme $b = \cosh\left(\frac{\ln(x + \sqrt{x^2 + 1})}{N}\right) = 1.3927481569544657$ $\varepsilon = \sqrt{10^{0.1A}}max - 1 = 0.15262041895091921, x = 1/\varepsilon = 6.552203217, \text{ asinh}(x) = \ln(x + \sqrt{x^2 + 1}) = 10^{-10} + 10^$ either from the Tables or by using **[G, Z, P] = BU_POLES(Uc, UJs, Amax, Amin, N)** We denormalize the poles by multiplying with r_{p0} which yields $s_{p1} = -4678.0959829440526 + j 8102.6999251429679$ krad/s $|s_{p1}| = r_{p0}$ The poles are according to Eq. (2.18) where $r_{p0} = \omega_c \varepsilon^{-1/N}$ and $\varepsilon = \sqrt{10^{0.1A} max} - 1$. Normalized poles according to Equation (2.33) are $s_{p1}=-0.48470285451502687\!+\!1.206155284996524i$ $= 2.5787215736978437, a = \sinh\Bigl(\frac{\ln\bigl(x+\sqrt{x^2+1}\bigr)}{N}\Bigr) = 0.96940570903005374, \text{ and}$ $A(2\omega_c) = -10\log\left(\frac{1}{1+\varepsilon^2(2)^6}\right) = 3.8633 \text{ dB and } A(4\omega_c) = -10\log\left(\frac{1}{1+\varepsilon^2(4)^6}\right) = 19.741 \text{ dB}$ the proper gain, for example, Gain = 1 at $\omega = 0$. Hence, $G = r_{p0}r'$ $s_{p2} = -9356.1919658881052$ krad/s 0.80901699, and $x_5 = -1$. The extreme values at $x = \pm 1$ are neither a maxima nor a minima. $0.80901699, \ x_2 = \cos(\pi \ 2/5) = 0.30901699, \ x_3 = \cos(\pi \ 3/5) = -0.30901699, \ x_4 = \cos(\pi \ 4/5) = -0.30901699, \ x_5 = -0.30901699, \ x_6 = -0.30901699, \ x_7 = -0.30901699, \ x_8 = -0.3090169, \ x_8 =$ We can either use Eq. (2.22) or Eq. (2.27), but the former is simpler to solve. We have at $\omega = 0$ Gain = 1 at ω = 0. Hence, $G = -2.04756350525.08664 \cdot 10^{11}$ Amin, N) $s_{p2} = -4847.0285451502687$ krad/s $s_{p1} = -2423.5142725751343 + j\,6030.7764249826196$ krad/s denormalize by multiplying with ω_c . We get $s_{p3} = -0.48470285451502687\text{-}1.206155284996524\text{i}$ $s_{p2} = -0.96940570903005374$ $s_{p3} = -4678.0959829440526 - j\,8\,102.6999251429679 \,\,\mathrm{krad/s}$ $s_{p3} = -0.5 - j \, 0.86602540378444$ $s_{p1} = -0.5 + j \, 0.86602540378444$ We get $\varepsilon = 0.15262041895091921$ and $r_{p0} = 9356.1919658881052$ krad/s and the normalized poles: and minima) are obtained from $n \arccos(x) = y = k \pi$. Finally, we get $x = \cos(\pi k/n)$. For example, a filter of order N = 5 we get the extreme values at $x_0 = 1$, $x_1 = \cos(\pi 1/5) =$ values occur for x < 1. We have $sin(y) = 0 \Rightarrow y = k \pi$ for k = sinteger and the extreme values (maxima Thus, the time axis of the original step response is divided by k. $s'(t) = \int_{-\infty}^{\infty} h'(t)dt = \int_{-\infty}^{\infty} h\left(\frac{t}{k}\right)\frac{1}{k}dt = \int_{-\infty}^{\infty} h\left(\frac{t}{k}\right)d\left(\frac{t}{k}\right) = s\left(\frac{t}{k}\right)$ Alternatively we get the poles from the Tables or by using [6, Z, P] = CH_I_POLES(Wc, Ws, Amax, $s_{p3} = -2423.5142725751343 - j 6030.7764249826196$ krad/s $H(s) = \frac{\sigma}{(s - s_{p2})(s - s_{p1})(s - s_{p3})} = \frac{\sigma}{(s + r_{p0})(s^2 + r_{p0}s + r_{0p}^2)}$ We select G so that the filter get $H(s) = \frac{1}{2}$ $(\overline{(s-s_{p2})(s-s_{p1})(s-s_{p3})}$ We select G so that the filter get the proper gain, for example, $\sqrt{1-x^2}$ G $|s_{p3}| = 1$ $|s_{p2}| = 1$ $|s_{p1}| = 1$ $|s_{p2}| = r_{p0}$ $|s_{p3}| = r_{p0}$

10

Thus, both the time axis and the original impulse response is divided by k.

and	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2.10 Trying with different Ws we get Amax = 0.1; Amin = 40; Uc = 5*10^6; Us = 3.52*Uc N = CR_0BRER(Uc, Us, Amax, Amin) Us = 17600000 N = 2.99983410225726 N = 3; [6, Z, P] = CR_POLES(Uc, Us, Amax, Amin, N yields G = 5.170164067567552e+05	and with U = 2* U C; Att = PZ_2_AIT_S(6, Z, P, U) we get Att = 4.38569 dB and with W = 4*Wc; we get Att = 23.9489 dB	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2.9 We need to determine Ws. We have $x = \sqrt{\frac{10^{0.1A_{min}} - 1}{10^{0.1A_{min}} - 1}} = 655.18755984513$. Let $y = \sqrt{10^{0.1A_{max}} - 1}$ $N = 3$ and we have $N = \frac{\ln(x + \sqrt{x^2 - 1})}{\ln(y + \sqrt{y^2 - 1})}$ Iterating we get $y = 5.518$ and $Ws = 27.591$ The following script yields Amaterial Mathematical States of States and Ws and $Ws = 27.591$ Box of Characterial States of States and Ws and $Ws = 27.591$ Box of Characterial States of States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial States and Ws and $Ws = 27.591$ Box of Characterial 	$\begin{split} H(0) ^2 &= \frac{1}{1 + \varepsilon^2 T_3^2(0)} = \frac{1}{1 + \varepsilon^2} \text{and} H(j\omega) ^2 = \frac{1}{1 + \varepsilon^2 T_3^2\left(\frac{\omega}{\omega_c}\right)}. \text{ A Chebyshev} \\ &= \operatorname{according to standard mathematical handbooks, be computed recursively: \\ &T_0(x) = 1, T_1(x) = x, \text{ and } T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x) \text{ for } n = 2, 3, \dots \\ &\text{We get } T_2(x) = 2xT_1(x) - T_0(x) = 2x^2 - 1 \text{ and } T_3(x) = 2xT_2(x) - T_1(x) = 2x(2x^2 - 1) - x \\ &= 4 \cdot 1^3 - 3 = 1, T_3(2) = 4 \cdot 2^3 - 6 = 26 \text{ and } T_3(4) = 4 \cdot 4^3 - 12 = 244. \text{ We get} \\ & H(j2\omega_c) ^2 = \frac{1}{1 + \varepsilon^2 T_3^2(2)} = \frac{1}{1 + \varepsilon^2 26^2} \implies A(2\omega_c) = -10\log\left(\frac{1}{1 + \varepsilon^2 26^2}\right) = 12.235 \\ &\text{and } A(4\omega_c) = -10\log\left(\frac{1}{1 + \varepsilon^2(244)^2}\right) = 39.5844 \text{ dB} \end{split}$
	1703632i 1703632i			857224i 857224i	y = Ws/Wc and with .59 Mrad/s.	11 hev polynomial can, $(-x = 4x^3 - 3x, T_3(1))$.23913 dB

1.2

œ

10 × 10⁴

The difference in order of the numerator and denominator is N, hence, the rate of attenuation increase

2.19 a) N = 12.6863, select N = 13

and $S_{p7} = -1.1561055100956283$ $S_{p5,\,9} = -1.0236805902050516 \pm j \, 0.53726901986892006$ $S_{p1,13} = -0.13935312021181373 \pm j \ 1.1476761992655875$ $S_{p6, 8} = -1.1225111851085223 \pm j 0.27667415813504104$ $S_{p4,10} = -0.8653574003264114 \pm j \, 0.76663975906144355$ $S_{p3,11} = -0.65674278378696671 \pm j \, 0.95145618207945792$ $S_{p2,12} = -0.4099606638167132 \pm j \ 1.0809774301975192$

 $s_{p6,\,8}{=}-4199192.0674512647\pm j\,1035007.8872462189$ $s_{p5,\,9} = -3829477.5776130003 \pm j\,2009864.8781862874$ $s_{p3,11} = -2456803.2146311956 \pm j\ 3559293.9342776011$ $s_{p2,12} = -1533618.1859958617 \pm j\,4043818.8146342896$ $s_{p1,13} = -521304.84286573727 \pm j\,4293331.6441677595$ $s_{p4,10}{=}-3237207.7705485001\pm j\ 2867915.8279677443$

b) *N* = 7.2035, *N* = 8 $s_{p7} = -4324864.7777713826$

 $s_{p1,8} = -299677.12331403373 \pm j\ 4824385.7094520265$

c) N = 7.2035, N = 8 $s_{z1,8} = \pm j \, 2451963.2010080758$ $s_{\mathcal{Q},7} = \pm j \ 2078674.0307563632$ $s_{p4,\,5} = -110323\,14.398128768 \pm j\,7027140.4456866905$ $s_{p3,6} = -3279485.7354346053 \pm j\,7016952.7240264211$ $s_{p2,7} = -1\,142287.754\,13\,13658\,\pm j\,5474357.4519172823$

 $s_{z4,5} = \pm j \ 487725.80504032073$ $s_{z3,6} = \pm j \ 1388925.5825490057$

 $s_{p4,5} = -3198781.2152561643 \pm j\ 801701.35661917937$ $s_{p3,6} = -3711795.7722573373 \pm j\ 2283052.3057531635$ $s_{p2,7} = -38\,11964.0054222203 \pm j \ 34\,16829.2372569\,158$ $s_{p1,8} = -36277.1442561826 \pm j\,4030424.8910224694$

d) N = 5.0659, N = 6 which yields $A_{min} \approx 76$ dB $s_{z1,6}=\pm\,j\,691008.33742590621$

ю II

 $s_{\rm 22,5}=\pm\,j\,18301\,27.0\,18922\,1932$ $s_{z3,4} = \pm j$ 2425882.8186241528 $s_{p2,5} = -1991633.9707195507 \pm j\ 5433593.8896988165$ $s_{p3,4} = -7416883.3161327159 \pm j \ 5088834.5452645291$ $s_{p1,6} = -434803.44804969523 \pm j\ 4716842.7330782395$

<pre>Ws = 1.01; NCA = 10; while NCA > 4 NCA = CA_ORDER(Wc, Ws, Amax, Amin); Ws = Ws*1.001; end Ws</pre>	<pre>Ws = 1.01; NCH = 10; while NCH > 4 NCH = CH_ORDER(Wc, Ws, Amax, Amin); Ws = Ws*1.001; end Ws</pre>	20 a) Amax = 1; Amin = 50; Uc = 1; Us = 2; NBU = BU_ORDER(Uc, Us, Amax, Amin) NCH = CH_OBDER(Uc, Us, Amax, Amin) yields NBW = 9.27950878963198 NCH = 5.41035662900978 NCA = 3.89077736917283 b) The following program yields Amax = 1; Amin = 50; Uc = 1; Us = 1.01; NBU = 10; Us = 1.01; NBU = 10; Us = U_0BDER(Uc, Us, Amax, Amin); Us = Us*1.001; end
% Cauer $W_{8} = 1.91100932207615$	% Chebyshev I and II Ws = 3.05688584458323	$\%$ Butterworth $W_{s}=4.99856496273532$

18

N = 7; 2.21We get using the programs below P = 1.0e+07 *Z = 1.0e+07 *G = 3.979874048506181e+04N = 6.05479197414172PLOT_PZ_S(Z, P, Wc, Ws, xmin, xmax, ymax) [6, Z, P] = CH_II_POLES(Wc, Ws, Amax, Amin, N) N = CH_ORDER(Wc, Ws, Amax, Amin) Amax = -10*log10(1 - 0.15^2); Amin = 60; P = 1.0e+07 *G = 6.591239977761730e+70N = 9.59684078908066 PLOT_PZ_S(Z, P, Wc, Ws, xmin, xmax, ymax) [6, Z, P] = BW_POLES(Wc, Ws, Amax, Amin, N) N = 10; N = BW_ORDER(Wc, Ws, Amax, Amin) Amax = -10*log10(1 - 0.15^2); Amin = 60; ктак = 2*10^6; ктіп = -3*10^7; утак = 4*10^7; Wc = 10^7; Ws = 25*10^6; Wc = 10[^]7; Ws = 25*10[^]6; All 10 zeros at $s = \infty$ 0+2.56429215818138i 0 - 2.56429215818138i0 + 3.19762001922483i0 - 3.19762001922483i0 + 5.76191217740622i 0 - 5.761912177406221 -0.18889878030815 - 1.19265996029086i-0.54820561217270 + 1.07591409362702i-0.54820561217270 - 1.07591409362702i-0.85385025914469 - 0.85385025914469i-1.07591409362702 + 0.54820561217270i-1.07591409362702 - 0.54820561217270i-1.19265996029086 + 0.18889878030815i-0.18889878030815 + 1.19265996029086i-0.85385025914469 + 0.85385025914469i-1.19265996029086 - 0.18889878030815i-0.24674031820480 + 1.25548408818160i -0.24674031820480 - 1.25548408818160-0.75877259180592 + 1.10500666421834i-0.75877259180592 - 1.10500666421834i-1.24825511517649 + 0.69813016902340i-1.24825511517649 - 0.69813016902340-1.47642555719924% selecting an integer order % Re-run the program after Chebyshev II % selecting an integer order % Re-run the program after Butterworth ۲ = 5 $xmax = 2*10^{6}; xmin = -3*10^{7}; ymax = 4*10^{7};$ % selecting an integer order [G, Z, P] = CA_POLES(Wc, Ws, Amax, Amin, N) $\text{Amax} = -10*\log 10(1-0.15^2); \text{Amin} = 60;$ P = 1.0e+07 *Z = 1.0e+07 * G = 9.568928390354895e+04N = 4.50491210883645PLOT_PZ_S(Z, P, Wc, Ws, xmin, xmax, ymax) N = CA_ORDER(Шc, Шs, Amax, Amin) Amax = -10*log10(1 - 0.15^2); Amin = 60; Wc = 10^7; Ws = 25*10^6; All 7 zeros at $s = \infty$ P = 1.0e+07 *G = 1.029881246525271e+48N = 6.05479197414172PLOT_PZ_S(Z, P, Wc, Ws, xmin, xmax, ymax) [6, Z, P] = CH_I_POLES(Wc, Ws, Amax, Amin, N) N = 10; N = CH_ORDER(Wc, Ws, Amax, Amin) **U**c = 10[^]7; **U**s = 25*10[^]6; 0+2.13849524487512i 0 - 2.13849524487512i 0+3.33398489680040i 0 - 3.33398489680040j -0.58966187555311 -0.43060072446038 + 0.71909125474291i -0.14055425087900 + 1.07446335622271i -0.14055425087900 - 1.07446335622271i-0.43060072446038 - 0.71909125474291i-0.34027298104788 - 0.46379676305258i-0.08404048601497 + 1.04214186684933i-0.34027298104788 + 0.46379676305258i -0.37767451592427 -0.23547620910072 + 0.83573288908858i-0.23547620910072 - 0.83573288908858i-0.08404048601497 - -1.04214186684933i % Re-run the program after % selecting an integer order % Re-run the program after Chebyshev I Cauer

Chebyshev I, Chebyshev II, and Cauer filters left to the right. Note that zeros at $s = \infty$ ar not printed. The poles and zeros are shown below with Butterworth

2.23We have $N = -10\log(1 + \omega^2 \tau_1^2) + 10\log(1 + \omega^2 \tau_2^2) - 10\log(1 + \omega^2 \tau_3^2)$ which can be

Transformation of the HP specification to the corresponding LP specification using $S = \omega r^2 / s$ and $\Omega = -\omega r^2/\omega$ where we neglect the negative sign since the specification of the magnitude function

2.27 2.26

 $A_{max} = 1 \text{ dB}, \ \Omega_c = \omega_I^2 / 70 \ 10^6$ is symmetric around $\omega = 0$. We get

 $A_{min} = 25 \text{ dB}, \ \Omega_s = \omega_I^2/20 \ 10^6$

IS

tables which are normalized to $\Omega_c = 1$ and $\Omega_s = 70/20 = 3.5$. Necessary order according the Eq.(2.7) We select $\omega_l^2 = 70$ Mrad/s to get a normalized LP specification in order to allow the use of standard

$\Omega_c = \omega_c$ and $\Omega_s = \omega_f^2 / \omega_s = 8.6428 \cdot 10^6$ and $\Omega_s / \Omega_c =$ Cauer filter is $N = 4.9293$ and we select $N = 5$. We modify the	31 We select $\omega_I = \omega_c = 5.5$ Mrad/s and get $\Omega_c = \omega_i$ 1.57142857. The required order for the Cauer fi	2.31
	30	2.30
$\pm j$ rad/s, which is OK, but the poles are: ce, there are three poles in the right-hand half of the <i>s</i> -plane, nore, there are six zeros and only five poles. Hence the filter is efficients and can therefore not be realized using standard	29 The zeros are s _{±1,2} = ±5 rad/s, s _{±3,4} = ±2 ±j rad/s, s _{p1,2,3,4} = ±1±2j and s _{p5} = 5 rad/s. Hence, there which makes the filter unstable. Furthermore, the non-causal. The filter has complex coefficient methods.	2.29
	28	2.28
+ r ₁ 746 s+1.568948)	$\left(\frac{s}{s} - \sigma_0\right) \left[\left(\frac{s}{s}\right) - 2\sigma_1 \frac{s}{s} + r_1 \right]$ $= \frac{s^3}{(s + 55.88482)(s^2 + 0.0280746 \text{ s}+1)}$	
$\frac{G_{s^{3}}}{\sigma_{1}} = \frac{G_{s^{3}}}{(\omega_{1}^{2} - \sigma_{1}s)(\omega_{1}^{4} - 2\sigma_{1}\omega_{2}^{2}s + r_{1}^{2}s^{2})}$	$\sigma_0 r_1^2 \text{ Insetting } s = \omega_f^2 / S \text{ gives}$ $H_{HP}(s) = \frac{G}{(\omega_r^2 + \sqrt{1/(\omega_r^2)^2} - \omega_r^2 - s)} = \frac{1}{2}$	
$= \frac{3911.937}{(S+1.252576)(S^2+1.252576 \text{ S}+3123.113)} \text{ where } G = -$	$H_{LP}(S) = \frac{G}{(S - \sigma_0)(S^2 - 2\sigma_1 S + r_1^2)} = \frac{G}{(S + 1)}$	
ling HP zeros using $s_{z} = \omega p^{2}/S_{z}$ yields $s_{z} = 0$, $n = 1, 2, 3$ since. The transfer function of the LP is	$S_{P3} = S_{P3} = S$	
69664638016 Mrad/s	$s_{p1} = -27.942407609029331 - j 48.39766966463$ $s_{p2} = -55.884815218058684$ Mrad/s $s_{p2} = -27.942407609029367 + i 48.39766066463$	
yields	$s = \frac{\omega_I^2}{S} = \omega_I^2 \frac{(a-jb)}{a^2+b^2}$ where $S = a+jb$ yields	
629723453274 ng HP poles using	$S_{p3}^{\mu=} = -0.62628819409051273 - j 1.08476297234$ We map the LP poles to the corresponding HP pc	
half of the s-plane 1629723453271	We select only the poles in the left-hand half of t $S_{p1} = -0.62628819409051295 + j 1.0847629723$. $S_{p2} = -1.2525763881810263$	
7629723453267	$S_{p5} = -1.2525763881810263$ $S_{p5} = -0.62628819409051384 + j 1.0847629723$	
629723453274 7629723453276	3 _{p2} = -1.252576381810263 S _{p3} = -0.62628819409051273- <i>j</i> 1.08476297234 S _{c4} = -0.62628819409051228 - <i>j</i> 1.0847629723	
1629723453271	∞ . We get $S_{p1} = -0.62628819409051295 + j 1.0847629723$.	
nd $\varepsilon = \sqrt{10^{0.1A}max - 1} = 0.50884714$ and all zeros are at $S =$	where $R_{p0} = \omega_c \varepsilon^{-1/N} = 1.25257639$ and $\varepsilon =$	
$\operatorname{ss}\left(\frac{\pi(2k-1)}{2N}\right)$ for $k=1,N$	from $S_k = R_{p0} \left(-\sin\left(\frac{\pi(2k-1)}{2N}\right) + j\cos\left(\frac{\pi(2k)}{2N}\right) \right)$	
$\frac{1}{1} = 2.836$. We select here $N = 3$. The poles are obtained	$N \ge \frac{\log\left(\frac{10^{0.1A}min-1}}{10^{0.1A}max-1}\right)}{2\log\left(\frac{\Omega_s}{\Omega_c}\right)} = \frac{\log\left(\frac{10^{2.5}-1}{10^{0.1}-1}\right)}{2\log(3.5)} = 2.8$	

a typical lowpass filter has a peak at the passband edge there will be two peaks in the BP filters group delay; one at each band edge. The second component is weighted with the factor
$$\omega_{l}^{2}/\omega_{c}^{2}$$
, which is large for low frequencies. Hence, the peak at the lower band edge is larger than that at the higher band edge. The second component is weighted with the factor $\omega_{l}^{2}/\omega_{c}^{2}$, which is larger than that at the higher band edge. $\omega_{l,l} \omega_{l,2} = 6 \cdot 8.5 = 51 (krad/s)^{2} = \omega_{l,l} \omega_{l,2} = 2 \cdot 25.5 = 51 (krad/s)^{2}$. We get $\Omega_{c} = \omega_{2,2} - \omega_{l} = 8.5 - 6 = 2.5 \, krad/s$. Normalized poles: (Approximately!) $S_{\mu}LP = -0.470 + 10.9659$. Normalization of MATLAB with $\omega_{R_{\mu}}/\omega_{R_{\nu}} = 0.2470 + 10.9659$. Denormalization of Chebyshev I filter are done by multiplication with $Q_{e} = 2.5 \, krad/s$. Denormalization of Chebyshev I filter are done by multiplication with $Q_{e} = 2.5 \, krad/s$. S $S_{\mu}LP = -0.6175 + j2.4148 \, krad/s$ and three zeros at infinity. (There are always equal numbers of poles and zeros.) The LP transfer function is $H_{LP}(S) = \frac{G}{(S - S_{\mu LP1})(S - S_{\mu LP2})(S - S_{\mu LP2})}$. LP toBP transformation $LP \rightarrow BP \Rightarrow S \rightarrow s + \frac{\omega_{L}^{2}}{s} \rightarrow S_{\mu}LP_{2} - S_{\mu}LP_{2} + \frac{\omega_{L}^{2}}{2} - S_{\mu}LP_{2} + \frac{\omega_{L}^{2}}{2} - S_{\mu}LP_{2}$. The bandpass poles can be found from equation: $s_{\mu BP} = \frac{S_{MLP}}{2} + \frac{\omega_{L}^{2}}{2} + \frac{\omega_{L}^{2}}{2} - S_{\mu}LP_{2}$.

2.36 First, we map the BP specification to the corresponding LP specification using $S = s + \omega_l^2/s$. We have $A_{max} = -10\log(1 - 0.09) = 0.4$ dB, $A_{min1} = A_{min2} = 35$ dB, The geometric requirement: $\omega_l^2 = \omega_{c2} \omega_{c1} = \omega_{s2} \omega_{s1} \Rightarrow 15 \cdot 10 = 150 \neq 32 \cdot 5 = 160$. We select to reduce: $\omega_{s2} = 30$ krad/s.

$$\begin{split} & \Omega_c = \omega_{c2} - \omega_{c1} = 15 - 10 = 5 \text{ krad/s} \\ & \Omega_s = \omega_{s2} - \omega_{s1} = 30 - 5 = 25 \text{ krad/s} \end{split}$$

We select $\omega_l^2 = 5$ krad/s to get a normalized LP specification with $\Omega_c = 1$ and $\Omega_s = 25/5 = 5$. The order for the LP filter is according to Eq.(2.16)

$$N \ge \frac{\operatorname{acosh}\left(\sqrt{\frac{10^{0.1A_{min-1}}}{10^{0.1A_{max}} - 1}}\right)}{\operatorname{acosh}\left(\frac{\omega_s}{\omega_c}\right)} = \frac{\operatorname{acosh}\left(\sqrt{\frac{10^{3.5-1}}{10^{0.04} - 1}}\right)}{\operatorname{acosh}(5.4)} = \frac{\operatorname{acosh}(181.01593)}{\operatorname{acosh}(5.1)} = 2.57$$

 $s_{p1,2} = \frac{-1665.0493 + j \ 5202.61161}{2} \pm \frac{\sqrt{6.2453513 \cdot 10^8}}{2} \angle \frac{2.1693372}{2}$ For example, for a pole, $S_{p1} = -1665.0493 + j 5202.61161$, we first compute the square root Mapping of LP poles and zeros are done according to $S = s + \frac{\omega_I^2}{s} = \frac{s^2 + \omega_I^2}{s}$ and b = 1.1800202240969Note that we get two BP poles (zeros) for every LP pole (zero). In the same way we get for $S_{p2} =$ where we must add π rad since the pole must be in the lhp. The BP poles are computed $s^2 - Ss + \omega_I^2 = 0$ and $s = \frac{S}{2} \pm \frac{\sqrt{(S^2 - 4\omega_I^2)}}{2}$. To compute the left hand side we proceed as follows where G has been selected so that $H_{LP}(0) = 1$. All LP zeros are at $S = \infty$. The attenuation and group $H_{LP}(S) =$ and $S_{p3} = -1665.0493083673987 - 5202.6116132077605^*$ We have $\varepsilon = 00.34931140018895$ and since $a\sinh(x) = x + \sqrt{x^2 + 1}$ we get a = 0.62645648634027 $S_{pk} = -\omega \Omega_c a \sin\left((2k-1)\frac{\pi}{2N}\right) + j\omega \Omega_c b \cos\left((2k-1)\frac{\pi}{2N}\right) \text{ for } k = 1, 2, ..N. \text{ where}$ where $a\cosh(x) = x + \sqrt{x^2 - 1}$. We select here N = 3 and get the LP poles for the Chebyshev I filter delay functions for the lowpass filter are shown below. $S_{p2} = -3330.0986167347974$ $S_{p1} = -1665.0493083673987 + 5202.6116132077605*i$ Poles are $(S_{p1}^2 - 4\omega_I^2) = (-1665.0493 + j \ 5202.61161)^2 - 6 \cdot 10^8 = -6.2429487 \cdot 10^8 - j17325210$ $a = \sinh\left(\frac{1}{N} \operatorname{asinh}\left(\frac{1}{\varepsilon}\right)\right), \ b = \cosh\left(\frac{1}{N} \operatorname{asinh}\left(\frac{1}{\varepsilon}\right)\right), \quad \varepsilon = \sqrt{10^{0.1A} max} - 1.$ $= -832.52465 + j \ 2601.3058 - \frac{\sqrt{623.86093}}{2} \angle \frac{3.1672499}{2}$ П $= -832.52465 + j \ 2601.3058 - 12495.35(\cos(1.5846686) + j\sin(1.5846686))$ A(ω) [dB] -832.52465 + j 2601.3058 - (-173.33324 + j 12494.148) $-\,832.52465+j\,2601.3058-12495.35\,\angle 1.5846686$ $(-1005.8579 + j \ 15095.454)$ -659.19141-j 9892.8424 $\frac{1}{(S-\sigma_0)(S^2-2\,\sigma_1 S+r_1^2)}$ 0.5 N ດ I 1.5 $(S + 3330.0986)(S^2 + 3330.0986 \text{ S} + 29839557)$ ω [rad/s] 2.5 $9.9368667 \cdot 10^{10}$ N $\frac{s^2 + \omega_l^2}{\omega_l}$ which can be rewritten 3.5 54 $\hat{\sigma}_{g}^{0}(\omega)$ i₀ [s]

> $S_{p3} = -1665.0493 + j \, 5202.61161 \text{ yields } s_{p5, \, 6} = \begin{pmatrix} -1005.8579 - j \, 15095.454 \\ - \kappa c 6 \, 10141 & 0.000 \end{pmatrix}$ 3330.0986 yields the bandpass poles $s_{p3,4} = \begin{pmatrix} -1665.0493 + j \ 12133.739 \\ -1665.0493 + -j \ 12133.739 \end{pmatrix}$ and

An LP Chebyshev I have all zeros at $S = \infty$, each resulting in a zero at $s = \infty$ and s = 0. The numerator

 $H_{BP}(s) =$ is therefore s^3 since the denominator has order 6. The transfer function is $9.9368667 \cdot 10^{10} s^3$

The attenuation and group delay is shown below. $(s^2 + 1318.3828 \text{ s} + 98302864)(s^2 + 2011.7158 \text{ s} + 2.288845 \cdot 10^8)(s^2 + 3330.0986 \text{ s} + 1.5 \cdot 10^8)(s^2 + 3330.0986 \text{ s} +$

2.39We get

2.382.37

 $\Omega_s = \omega_I^2 / (\omega_{s2} - \omega_{s1}) = \omega_I^2 / (50.5 - 49.5) 2\pi$ $\Omega_c = \omega_l^2 / (\omega_{c2} - \omega_{c1}) = \omega_l^2 / (51.5 - 48.5) 2\pi$

Nomogram or MATLAB with $\Omega_s / \Omega_c = 2.885714 \implies N = 3$ select to decrease ω_{s1} to $\omega_{s1} = \omega_{c2}\omega_{c1}/\omega_{s2} = 310.7688$ rad/s and $\omega_1^2 = \omega_{c2}\omega_{c1} = 98686.174$ since we Normalized poles for a Chebyshev I filter are: do not want to change the passband edges. We get $\Omega_c = 5235.464$ and $\Omega_s = 15706.39$. The symmetry requirement yields: $\omega_{c2}\omega_{c1}$ = 98607.22 (rad/s)² and $\omega_{s2}\omega_{s1}$ = 98686.174 (rad/s)² We $S'_{pLP1} = -0.45322183$

Denormalizing with
$$\Omega_c = 5231.2754$$
 yields
 $S_{pLP1} = -3486.923$ rad/s
 $S_{pLP2,3} = -1743.4613 \pm j5447.617$ rad/s
Transformation to a CD filtration $\alpha = -\omega_L^2 + \omega_L^2 + \omega_L^2$

 $S'_{pLP2,3} = -0.2266109 \pm j0.9508194$

ransformation to a SB filter using
$$S = \frac{\omega_I^2 s}{s^2 + \omega_I^2}$$
, i.e., $s = \frac{\omega_I^2}{2S} \pm \sqrt{\left(\frac{\omega_I^2}{2S}\right)^2 - \omega_I^2}$ yields

Ţ

 $s_{pBS1,2} = -14.1509 \pm j313.6989$ rad/s (from the real LP pole)

 $s_{pBS3,4} = -2.698297 \pm j322.3305$ rad/s

 $s_{pBS5,6} = -2.560764 \pm j306.0238$ rad/s

get 3 zeros at $s_{z1,2,3} = \pm j\omega_I = \pm j314.1436 = \pm j49.9975 \cdot 2\pi$ rad/s The zeros of the SB filer are obtained from the 3 zeros of the LP filter, i.e., from $S = \infty$. Hence, we

All together 6 zeros. The transfer function is

26

2 × 10⁴

2 x 10⁴

2.43 2.42 2.41

 $\|$

 $\|$ 28