 	$9^{\circ} \varepsilon$
 	カ®
$\frac{{z^{d}}^{d+s v+}{ }_{z^{s}}}{{ }_{z^{2}} d+{ }_{z^{s}}}=(s) H$	でє
	$I^{\prime} \varepsilon$

N＝8；Ladder＝
［L，C，K］＝BW＿LADDER（Wc，Ws，Amas，Amin，N，Rs，RL，Ladder）
$\mathrm{N}=7.0186$ We select $\mathrm{N}=8$

3．7 $R C$ section attenuate at the cutoff frequency with 3.0102 dB ．Hence，$\omega_{C}=1 / R C$ ．For $f_{c}=1,2 \mathrm{kHz}$
and $R=10 \mathrm{k} \Omega$ we get $2 \pi 1200=1 /\left(C \quad 10^{4}\right)=>C=13.249 \mathrm{nF}$

 $6 z 50 \cdot 0={ }^{2 d 7}, T$
 Пท

 4р"

 which yields: $\Omega_{c}=1 \mathrm{rad} / s$ and $\Omega_{s}=3.75 \mathrm{rad} / \mathrm{s}$. From the
toolbox or nomogram we get $N=3$.
In the LPP \rightarrow HP transformation, an inductors is replaced with

 Transform from LP to a HP filter yields:
 $C_{1}=C_{5}=C_{1}^{1} /\left(R_{0} r_{p 0}\right)=1.001523 \cdot 10^{-2} \mathrm{~F}$
$L_{2}=L_{4}=L_{2} R_{0} r_{p 0}=65.55277 \mathrm{H}$ $R_{s}=R_{L}=C_{1}$ and all inductances with $R_{0} / r_{p 0}$.
$R_{s}=R_{L}=50 \Omega$

 resonance circuit consisting of a capacitor, $C_{B P}=C^{\prime}$ and an

 the LP filter is replaced by a series resonance circuit consisting of a

 3.19 We have for the LP-BP transformation
$\overline{0}$
c) It is possible to replace the resistor R_{s} with another diplexer with the input impedance $R_{s}=8 \Omega$ and
that divide the lower frequency band $(0-2.5 \mathrm{kHz})$ in two bands. b) We get after long calculations $Z_{i n}=8 \Omega$.

 Note: If the speakers are placed relatively far from each other (one wavelength or more at the
passband edge frequency) then this method is appropriate. If the speakers are placed closer, then the $L_{4}=R_{0}\left(\omega_{c} C_{3}{ }^{\prime}\right)=38.98 \mu \mathrm{H}$
$C_{5}=1 /\left(R_{0} \omega_{c} L_{3}{ }^{\prime}\right)=5.305 \mu \mathrm{~F}$ $L_{4}=R_{0}\left(\left(\omega_{c} C_{3}{ }^{\prime}\right)=381.98 \mu \mathrm{H}\right.$ The element values in the HP filt
$C_{3}=1 /\left(R_{0} \omega_{c} L_{1}{ }^{\prime}\right)=15.915 \mu \mathrm{~F}$ $L_{3}{ }^{\prime}=1.5000 \quad L_{3}=L_{3}{ }^{\prime} R_{0} / \omega_{c}=1.5000 \cdot 8 / 5000 \pi=0.7639 \mathrm{mH}$ $C_{2}^{\prime}=1.3333 \quad C_{2}=C_{2}{ }^{\prime} /\left(R_{0} \omega_{c}\right)=1.3333 /(8 \cdot 5000 \pi)=10.61 \mu \mathrm{~F}$ $\begin{array}{ll}L_{1}{ }^{\prime}=0.5000 & R_{s}=8 \Omega \\ L_{1}=L_{1}{ }^{\prime} R_{0} / \omega_{c}=0.5000 \cdot 8 / 5000 \pi=0.2547 \mathrm{mH}\end{array}$

[^0]
Ladder = 0, Rs = 1000; RL = 500;
$[L, ~ C, K]=$ CH_I_LADDER(Wc, Ws, Amax, Amin, N, Rs, RL, Ladder)
 Now, the case RL $=\mathbf{1 0 0 0}$ and Rs $=\mathbf{5 0 0}$ do not exist. Hence we interchange the terminating resistor
and use tables with $r=0.5$. $\Omega_{S} / \Omega_{\mathrm{c}}=19 / 7=2.71$ Using the program below we get $N=3.085$. Hence we select $N=4$:
Now, the case $\mathbf{R L}=\mathbf{1 0 0 0}$ and $\mathbf{R s}=\mathbf{5 0 0}$ do not exist. Hence we interchange the termin The filter order: $A_{\text {max }}=0.09883 \mathrm{~dB}, A_{\text {min }}=22 \mathrm{~dB}$ and $\Omega_{S}=\omega_{S 2}-\omega_{S 1}=2 \pi(20-1) \cdot 10^{3}=2 \pi \cdot 19 \cdot 10^{3} \mathrm{rad} / \mathrm{s}$ $\Omega_{\mathrm{c}}=\omega_{C 2}-\omega_{C 1}=2 \pi(10-5) \cdot 10^{3}=2 \pi \cdot 7 \cdot 10^{3} \mathrm{rad} / \mathrm{s}$ Increase $\omega_{S 1} \Rightarrow \omega_{S 1}=4 \pi^{2} \cdot 50 \cdot 10^{6} / 2 \pi \cdot 20 \cdot 10^{3}=2 \pi \cdot 2.5 \cdot 10^{3} \mathrm{rad} / \mathrm{s}$ The symmetry requirement is not satisfied. We select $\omega I^{2}=4 \pi^{2} \cdot 50 \cdot 10^{6}(\mathrm{rad} / \mathrm{s})^{2}$ $\omega_{S 1}=2 \pi \cdot 1 \cdot 10^{3} \mathrm{rad} / \mathrm{s}, \omega_{S 2}=2 \pi \cdot 20 \cdot 10^{3} \mathrm{rad} / \mathrm{s} \Rightarrow \omega_{S 1} \omega_{S 2}=4 \pi^{2} \cdot 20 \cdot 10^{6}(\mathrm{rad} / \mathrm{s})^{2}$ $3.22 \omega_{C 1}=2 \pi \cdot 5 \cdot 10^{3} \mathrm{rad} / \mathrm{s}, \omega_{C 2}=2 \pi \cdot 10 \cdot 10^{3} \mathrm{rad} / \mathrm{s} \Rightarrow \omega_{C 1} \omega_{C 2}=4 \pi^{2} \cdot 50 \cdot 10^{6}(\mathrm{rad} / \mathrm{s})^{2}$
$\bar{\longrightarrow}$

 Denormalize with $R_{0}=500 \Omega$ and $\Omega_{\mathrm{c}}=2 \pi \cdot 12 \cdot 10^{3} \mathrm{rad} / \mathrm{s}$. $C_{2}^{\prime}=1.0967$

 $\Omega_{S}=\omega_{S 2}-\omega_{S 1}=2 \pi(12-4.5) \cdot 10^{3}=2 \pi \cdot 7.5 \cdot 10^{3} \mathrm{rad} / \mathrm{s}$
The filter order: $A_{\text {max }}=0.5 \mathrm{~dB}, A_{\text {min }}=20 \mathrm{~dB}$ and $\Omega_{C}=\omega_{C 2}-\omega_{C 1}=2 \pi(9-6) \cdot 10^{3}=2 \pi \cdot 3 \cdot 10^{3} \mathrm{rad} / \mathrm{s}$ Increase $\omega_{S 1} \Rightarrow \omega_{S 1}=4 \pi^{2} \cdot 54 \cdot 10^{6} / 2 \pi \cdot 12 \cdot 10^{3}=2 \pi \cdot 4.5 \cdot 10^{3} \mathrm{rad} / \mathrm{s}$ The symmetry requirement is not satisfied. We select $\omega I^{2}=4 \pi^{2} \cdot 54 \cdot 10^{6}(\mathrm{rad} / \mathrm{s})^{2}$ $\omega_{S 1}=2 \pi \cdot 4 \cdot 10^{3} \mathrm{rad} / \mathrm{s}, \omega_{S 2}=2 \pi \cdot 12 \cdot 10^{3} \mathrm{rad} / \mathrm{s} \Rightarrow \omega_{S 1} \omega_{S 2}=4 \pi^{2} \cdot 48 \cdot 10^{6}(\mathrm{rad} / \mathrm{s})^{2}$ $3.21 \omega_{C 1}=2 \pi \cdot 6 \cdot 10^{3} \mathrm{rad} / \mathrm{s}, \omega_{c 2} \omega_{c 2} 2 \pi \cdot 9 \cdot 10^{3} \mathrm{rad} / \mathrm{s} \Rightarrow \omega_{c 1} \omega_{c 2}=4 \pi^{2} \cdot 54 \cdot 10^{6}(\mathrm{rad} / \mathrm{s})^{2}$
 Transform to a BP ladder. $l_{1}=2.90 \mu \mathrm{H}, c_{1}=95.68 \mathrm{pF}, l_{2}=2.3098 \mu \mathrm{H}, c_{2}=120.2 \mathrm{pF}, l_{3}=1.2026 \mu \mathrm{H}$ and C with $1 / R_{0} R r_{p 0} . C_{1}=95.68 \mathrm{pF}, L_{2}=2.3098 \mu \mathrm{H}, C_{3}=230.987 \mathrm{pF}, L_{4}=956.80 \mathrm{nH}$.

Next step: Perform the LP to BP transformation! Incomplete solution! Since the ladder is reciprocal we may place the signal source in series with the "normal load resistor"
and take the output across the "normal source resistor". Hence, we obtain a T ladder.

 below requires fewer element compared to a complete lattice section.

Θ	ω_{s} / ω_{c}	$A_{\min }$	C_{1}	C_{2}	L_{2}	C_{3}	C_{4}	L_{4}	C_{5}
23	2.559304665	61.2	0.732110	0.044113	1.261137	1.496225	0.121060	1.149490	0.662813

Place a node inside every closed loop in the π ladder and one outside the loops as shown below
Connect the nodes as shown.

[^0]:

