with the same input impedance. In fact, a Richards' structure can realize any reactance function
 line. We get the new port resistances $R_{3}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)$ and $R_{4}=R_{1}^{2} /\left(R_{1}+R_{2}\right)$. Again we identify

$\stackrel{+}{i}$
4.1 The chain matrix of two cascaded two-ports is obtained by multiplying the individual chain matrices.
$K=\left[\begin{array}{ll}\cosh \left(\gamma d_{1}\right) & Z_{0} \sinh \left(\gamma d_{1}\right) \\ \frac{\sinh \left(\gamma d_{1}\right)}{Z_{0}} & \cosh \left(\gamma d_{1}\right)\end{array}\right]\left[\begin{array}{ll}\cosh \left(\gamma d_{2}\right) Z_{0} \sinh \left(\gamma d_{2}\right) \\ \frac{\sinh \left(\gamma d_{2}\right)}{Z_{0}} & \cosh \left(\gamma d_{2}\right)\end{array}\right]$ and we get
$K=\left[\begin{array}{ll}\frac{\cosh \left(\gamma\left(d_{1}+d_{1}\right)\right)}{} Z_{0} \sinh \left(\gamma\left(d_{1}+d_{1}\right)\right)\end{array}\right]$
$\left.\quad \begin{array}{ll}\frac{\sinh \left(\gamma\left(d_{1}+d_{1}\right)\right)}{Z_{0}} & \cosh \left(\gamma\left(d_{1}+d_{1}\right)\right)\end{array}\right]$
$\cosh \left(x_{1}+x_{2}\right)=\cosh \left(x_{1}\right) \cosh \left(x_{2}\right)+\sinh \left(x_{1}\right) \sinh \left(x_{2}\right)$ and
$\sinh \left(x_{1}+x_{2}\right)=\sinh \left(x_{1}\right) \cosh \left(x_{2}\right)+\cosh \left(x_{1}\right) \sinh \left(x_{2}\right)$

 $\overline{\underbrace{2}}$

$d=14.9 \mathrm{~mm}$
$d=(1 / \beta) \operatorname{atan}\left(Z_{0}\left(Z_{L}-Z_{\text {in }}\right) /\left(Z_{L} Z_{\text {in }}-Z_{0}{ }^{2}\right)=14.9 * 10^{-3}\right.$ meter
$z_{\text {in }}=z_{0}\left(Z_{L}+Z_{0} \tan (\beta \mathrm{~d})\right) /\left(Z_{0}+z_{L} \tan (\beta \mathrm{~d})\right)$
By re-ordering this equation we find:
Due to the equation 4.24 in the text book we have:
$v=0.6 * 310^{8,} \lambda=v / f, \beta=2 \pi \mathrm{i} / \lambda$
$z_{\text {in }}=30-\mathrm{j} 60$
$z_{L}=30+j 60, z_{0}=50, f=2.4 \mathrm{e} 9$
is operated at 2.4 GHz . Determine the length of this transmission line so that we have input impedance of the
transmission line equal to: $Z_{i n}=30-\mathrm{j} 60 \Omega$. 4.12 A 50 ohm transmission line is loaded with a complex impedance: $Z_{L}=30+\mathrm{j} 60 \Omega$. the transmission line
with $C=27 / 32$ F and $L=4 / 27 \mathrm{H}$.

 with a short-circuit. The solution can be verified by
Den $=\left[\begin{array}{ll}2 \mathrm{\theta} & 13 \\ \text { al }\end{array}\right]$;
Answer: The characteristic resistances are $Z_{1}=1 \Omega, Z_{2}=2 \Omega, Z_{3}=3 \Omega$ and the last UE is terminated

$=0.16784916 \mathrm{pF}, C_{2}=C_{L P 2}=7.2727178 \mathrm{pF}$, and $L_{2}=1 / \omega_{1}{ }^{2} C_{L P 2}=0.61078147 \mathrm{nH}$.
This filter is obviously very difficult to implement with discrete components, since an
出

