	L'S

 $I_{1}=C V_{2}+D\left(-I_{2}\right)$
and $V_{\text {in }}=R_{1} I_{1}+V_{1}$ and $V_{2}=-R_{2} I_{2}$ where the currents are defined into the two-port. Elimination $\begin{array}{ll}\text { 5.6 } & \text { For a two-port we have according to its definition of the } \mathbb{Z} \text { matrix } \\ V_{1}=\mathrm{A} V_{2}+B\left(-I_{2}\right) \\ I_{1}=\mathrm{CV} \\ 2\end{array}$

$\xlongequal{{ }^{\mathrm{E} \text { I'S }}}$

SLNANGTG LINDYID DISVG ©

чب!
 $\cdot G / \mathrm{I} \neq \forall$ әЈи! $\begin{array}{r} \tau_{I} z_{y-}={ }^{\tau_{\Lambda}} \\ \tau_{I} \varepsilon_{y={ }^{\mathrm{I}} I}{ }^{\mathrm{I}} \\ { }^{\tau_{\Lambda}}={ }^{\mathrm{I}} \Lambda \end{array}$

 $\xlongequal{2}$
 The parallel capacitor shall have the capacitance 2.75 pF .

 $\frac{{ }^{7}(m)}{{ }^{7} y^{I}+{ }^{I} y}$

select $\frac{R_{4}}{R_{3}}$ » $\frac{R_{1}}{R_{2}}$ (pole in the LHP). Unfortunately we get a large deviation in the phase response. The

 compared to the real pole in the Miller-integrator in Problem 5.15. The most important difference is
that Deboo's integrator is positive.

we get $H(s)=\frac{2}{s R C+\frac{2(s R C+2)}{}}$ and with an ideal operational amplifier we get $H(s)=\frac{2}{s R C}$. The
$\frac{V}{\left({ }^{I} y+{ }^{\tau} y\left(1+{ }^{I} y \partial s\right)\right)\left({ }^{t} y+{ }^{\varepsilon} y\right)}+{ }^{t} y^{\tau} y+{ }^{\varepsilon} y^{I} y-{ }^{t} y^{\tau} y^{I} y \partial^{s} \quad{ }^{1} \Lambda$
$\left.\tau_{\Lambda}=\left(\Lambda{ }^{+}{ }^{+} \Lambda\right)\right\rangle$) $=\frac{\Lambda}{\tau_{\Lambda}}$

$$
\begin{aligned}
& { }^{\imath} \Lambda=\left(\Lambda-{ }^{+} \Lambda\right) V \\
& 0=\frac{{ }^{\dagger} y}{\Lambda}-\frac{{ }^{\varepsilon} y}{\left(\Lambda-{ }^{\tau} \Lambda\right)}
\end{aligned}
$$

$$
\left(\frac{\left(V_{1}-V_{+}\right)}{R_{1}}-s C V_{+}+\frac{\left(V_{2}-V_{+}\right)}{R_{2}}=0\right.
$$

\#

we get $H(s)=-\frac{10^{14}}{\left(s+20 \cdot 10^{6}\right)(s+50)}$, i.e., the pole at $s=0$ have moved into the LHP. A resistor, r

We get, with the values above, $H(s)=-\frac{10^{14}}{\left(s+20 \cdot 10^{6}\right) s}$. The pole $s_{p}=-20 \mathrm{Mrad} / \mathrm{s}$ is fare from the
We get, if the operational amplifier gain is large, $H(s)=-\frac{1}{s R C}$.
วys $\left(\frac{\partial y}{I}+q \partial+s\right)$

Elimination gives $H(s)=-\frac{\frac{1}{s C}}{R+\frac{1}{s C}}=-\frac{1}{s R C+\frac{1+s R C}{A}}$.
With
 S! ұuәшәлолdш! ұиеэџ! amplifier is cancelled. However, the pole must be known and remain constant, which is not the case
 ${ }^{\prime} m\left(\left(1+\frac{{ }^{\prime}}{s}\right)-\right.$

We obtain, if we select $r_{x}=\frac{1}{C \omega}=\frac{1}{10 \cdot 10^{-9} \cdot 10^{5}}=1000 \Omega$, $\left.\frac{{ }^{7}{ }_{\mathrm{M}}}{s(\mathrm{I}+3 \mathrm{C}}\right)$

$$
H(s)=\frac{}{\left(R-r_{\chi}\right) s C+\underline{(s R C+1) s}}=\frac{}{\left(s R C-r_{X} C \omega_{t}+\omega_{t} R C+1\right) s}
$$

$\left(\frac{\partial^{s}}{}+{ }^{x_{\Lambda}}\right)-\quad=\frac{{ }^{2} Z+{ }^{\mathrm{I}} Z}{{ }^{{ }^{Z} Z}} \mathbf{}-=(s) H$

5.21 We have $V_{3}=\frac{1}{s C}\left(I_{1}+I_{2}\right), I_{1}=g_{m_{1}}\left(V_{1}-0\right), I_{2}=g_{m_{2}}\left(0-V_{2}\right)$ which yields

5.18
$\overline{\text { 5.19 }}$
5.20 For a transconductor we have: $I=g_{m}\left(V_{+}-V_{-}\right) \quad$ For this circuit we have
$I_{1}+I_{2}+I_{3}=0, \quad I_{1}=g_{m_{1}}\left(V_{1}-0\right), \quad I_{2}=g_{m_{2}}\left(0-V_{2}\right), \quad I_{3}=g_{m_{3}}\left(0-V_{3}\right) \quad$ which yields
$\quad g_{m_{1}} V_{1}-g_{m_{2}} V_{2}-g_{m_{3}} V_{3}=0$ and $V_{3}=\frac{g_{m_{1}}}{g_{m_{3}}} V_{1}-\frac{g_{m_{2}}}{g_{m_{3}}} V_{2}$

d) $H(s)=\frac{+2}{s R C}$ The integrator is less sensitive for the operational amplifiers finite $G B$. integrator is $Z_{i n}=R+1 / s C$ and the circuit must have a low impedance signal source.
c) $H(s)=\left(\frac{1+R_{1} C_{1}}{1+R_{2} C_{2}}\right) \frac{+1}{s R_{1} C_{1}}=\frac{+1}{s R C}$ if $R_{1}=R_{2}=R$ and $C_{1}=C_{2}=C$. The input impedance to the
b) $H(s)=\frac{+1}{s R C} \frac{R_{2}}{R_{1}}$. Positive integrator.
5.17 a) $H(s)=\frac{-1}{s R C}$ The integrator is less sensitive for the operational amplifiers finite $G B$.

[^0]

[^0]:

