
 Denormalization with respect to $R_{0}=R_{L}=600 \Omega$ and $\omega_{I}=\omega_{c}=200 \cdot 10^{5} 2 \pi \mathrm{rad} / \mathrm{s}$ yields $C_{3}^{\prime}=0.49417$ $L_{2}{ }^{\prime}=\frac{1}{\omega_{I}^{2} C_{2}{ }^{\prime}}=\frac{1}{1 \cdot 0.9941}=1.005935$
 (with passband edge $\omega_{c}=1$) are after the $\mathrm{LP} \rightarrow \mathrm{HP}$
transformation The element values for the normalized HP filter $C_{L P 2^{\prime}}=0.9941$
$L_{L P 3^{\prime}}=2.0236$ $L_{L P 1^{\prime}}=2.0236$
$C_{L P 2^{\prime}}=0.9941$
 yields $N=3$.
A normalized LP T ladder, which has the lowest number of $\mathrm{V}_{1}{ }_{-}^{+}$
inductors, has the element values
$r=1$ $\Omega_{s}=\frac{\omega_{c}}{\omega_{s}}=\frac{4 \pi^{2} \cdot 4 \cdot 10^{10}}{2 \pi \cdot 5 \cdot 10^{4}}=16 \pi \cdot 10^{5}$ and $\frac{\Omega_{s}}{\Omega_{c}}=4$ which
 $\omega_{c}=20010^{5} 2 \pi \mathrm{rad} / \mathrm{s}, \omega_{s}=5010^{3} 2 \pi \mathrm{rad} / \mathrm{s}$. We select $\omega_{I}=\omega_{c}=>\Omega_{c}=\omega_{c}$ The specification correspond to a HP filter. First we transform the specification to a specification for
a corresponding LP filter. 8.4 Ther for 8.3 $\overline{8.3}$

$\operatorname{s}^{d} 8 \varepsilon^{\prime}+6 \tau={ }^{\varepsilon}$ ว $\mathrm{C}_{2}=28.1619 \mathrm{pF}$
$\mathrm{L}_{2}=113.5940 \mu \mathrm{H}$

 8.9 The final realization is.

$K(s)=\frac{R_{1} R_{2} C_{4}}{R_{3}}$ and
$r_{\mathrm{i}}=L_{\mathrm{i}} / K(s)$ for $i=1,2,3$. Using Antoniou's GIC we get
$K(s)=\frac{R_{1} R_{2} s C_{4}}{R_{3}}$ and network and place identical PICs at
equivalent network shown to the below.
Using Antoniou's GIC we get network and place identical PICs at all external nodes, except for the ground node. We get the while this do not effect the frequency response). We replace the inductor network with a resistor Realize the Cauer filter using Gorski-Popiel s method.
We extract the inductor network as shown in the figure (we interchange the position of L_{3} and C_{3}
$\stackrel{\infty}{\infty}$
$\underset{\sim}{\infty}$
$C, R_{2}=R_{3}=10 \mathrm{k} \Omega$, we get $D_{2}=C^{2} R_{4}$ which with $C=10 \mathrm{nF}$, yields $R_{4}=8.347 \mathrm{k} \Omega$.
 $C_{2} / k=8.34710^{-13} \mathrm{Fs}$.
We get the element
 resistors that correspond to small inductors will
be small and the capacitance that correspond to sm We select $K(s)=k / s$. If k is selected too small, the are replaced with resistors, capacitors replaced
with supercapacitors, and resistors replaced with
capacitors. are replaced with resistors, capacitors replaced
with supercapacitors, and resistors replaced with impedances with $K(s)$ a new ladder structure with
the same transfer function but where inductors mH and $C_{2}=83.47 \mathrm{nF}$. By multiplying all
impedances with $K(s)$ a new ladder structure with $R_{1}=R_{2}=1 \mathrm{k} \Omega, L_{1}=L_{3}=209.4 \mathrm{mH}, L_{2}=33.06$
mH and $C_{2}=83.47 \mathrm{nF}$. By multiplying al
 an inductor will not be reciprocal and may even b
come active and the sensitivity is deteriorated.
 33.04 nF . It is important that the PICs are

 $R_{1}=787 \Omega, R_{2}=R_{3}=4.7 \mathrm{k} \Omega, C_{4}=100 \mathrm{nF}$ which
We select $K(s)=\frac{R_{1} R_{2} s C_{4}}{R_{3}}=7.7810^{-5} s$ where
Realize the filter in Problem 12.8 using Gorski-Popiel's method.
$R_{2}=200 L_{2} / C_{4} R_{5}=200 L_{2} \omega_{c}=200 \cdot 908.7=18.174 \mathrm{k} \Omega$.
$R_{4}=200 L_{4} / C_{4} R_{5}=200 L_{4} \omega_{c}=200 \cdot 7.05=1410 \Omega$.
We get more reasonable values if we instead select
Obviously this is to small resistors for the operational amplifiers. The resistors should be at least a few
$\mathrm{k} \Omega$. $R_{4}=L_{4} / C_{4} R_{5}=L_{4} \omega_{c}=8.82179 \cdot 10^{-5} \cdot 8$
$\cdot 10^{6}=7.05 \Omega$. $=0.11359 \cdot 10^{-3} \cdot 8 \cdot 10^{6}=908.7 \Omega$.
$R_{4}=L_{4} / C_{4} R_{5}=L_{4} \omega_{C}=8.82179 \cdot 1$
 (corresponding to the inductors) are
$R_{2}=s L_{2} / K(s)=L_{2} / C_{4} R_{5}=L_{2} \omega_{c}=$

 i.e., we should select $\omega_{c} C_{4} R_{5}=1$.
In this case we have $\omega_{c}=8 \mathrm{Mrad} / \mathrm{s}=>$ terminating resistors) in order to minimize the effect of finite bandwidth of the operational amplifiers,
i.e., we should select $\omega_{c} C_{4} R_{5}=1$.
 becomes resistorswith the values $L_{2} / R C$ and $L_{4} / R C$. Select $R C$ to obtain suitable impedance in the Extract the inductors as shown in the figure below. We need three PICs with $K(s)=s R C=>$ inductor 83

8.15 We multiply all elements with $1 / \mathrm{s}$.
\Longrightarrow
$\operatorname{an}^{\mathrm{d}} \mathrm{I}=$ り $\frac{R_{3}}{R_{2} R_{4} C_{1} C_{5}}=\frac{1}{D} \Rightarrow>\frac{R_{3}}{R_{2} C_{1} \omega_{\text {critial }}}=\frac{1}{D}=>R_{3} / C_{1} R_{2}=R_{4} C_{5} \cdot 10^{6}=10^{3}$

We select $R_{4} C_{5}=1 / \omega_{\text {critical }}=1 / 10^{3}=10^{-3}$ where we assume that $\omega_{\text {critical }}=10^{6} \mathrm{rad} / \mathrm{s}$ $Z_{i n}(s)=\frac{Z_{1} Z_{3}}{Z_{2} Z_{4}} Z_{5}=\frac{\overline{s C_{1}} R_{3}}{R_{2} R_{4}} \frac{1}{s C_{5}}=\frac{R_{3}}{R_{2} R_{4} C_{1} C_{5}} \frac{1}{s^{2}}=\frac{1}{D s^{2}}$
8.14 For a GIC with $Z_{1}=1 / s C_{1}, Z_{2}=R_{2}, Z_{3}=R_{3}, Z_{4}=R_{4}, Z_{5}=1 / s C_{5}$
$\stackrel{\infty}{\stackrel{\infty}{\omega}}$
$\stackrel{\infty}{+}$

