

require a relatively large capacitance $C = 1 \ \mu F$ since the resonance frequency is low.

 $L = \frac{1}{Co^2} = \frac{1}{1 \cdot 10^{-6} (100\pi)^2} = 10.13 \text{ H}$

The inductor can be realized by using a PIC. We get the circuit shown below.

We select $Z_2 = Z_3 = R = 10 \text{ k}\Omega$ and to reduce the influence of finite *GB* of the operational amplifiers, we select $Z_4 = 1/sC_4$ where $C_4 = 1 \mu F$

$$\omega_c C_4 R_5 = 1 \Rightarrow R_5 = \frac{1}{\omega_c C_4} = \frac{1}{100\pi \cdot 10^{-6}} = 3183 \ \Omega$$
$$Z_{in} = \frac{R_1}{\frac{1}{2}} \cdot R_5 = sL \Rightarrow R_1 = \frac{L}{R_5 C_4} = \frac{10.13}{318.31 \cdot 10^{-6}} = 31.824 \ \text{k\%}$$

$$\frac{s\overline{c_4}}{s\overline{c_4}}$$
8.2 The specification correspond to a HP filter of order N = 3.
We get the following normalized element values for the LP filter.
 $L'_{LP1} = 1.3553$ $C'_{LP2} = 1.2740$ $L'_{LP3} = 1.7717$ $R_1' = 0$ and $R_2' = 1$.
The filter is, of course, not suitable as reference filter, since it 1.... 1.

$$L'_{LP1} = 1.3553 \quad C'_{LP2} = 1.2740 \quad L'_{LP3} = 1.7717 \quad R_1 = 0 \text{ and } R_2 = 1.$$

The filter is, of course, not suitable as reference filter, since it
is singly resistively terminated, i.e., it has high element
sensitivity. Select $\Omega_c = 4$ krad/s and denormalize so that the
band edge becomes 4 krad/s and $R_2 = 600 \ \Omega$, i.e., select $R_0 =$
 $L = L_{LP} \cdot \frac{R_0}{\Omega_c}$ and $C = C_{LP} \cdot \frac{1}{R_0 \Omega_c}$.
We get with the LP-HP transformation
 $C_3 = \frac{1}{\omega_f^2 C_2} = \frac{1}{\omega_f^2 C_{LP3} \cdot \frac{R_0}{\Omega_c}} = \frac{R_0}{\omega_f C_{LP2} \cdot \frac{1}{R_0 \Omega_c}} = \frac{600}{\omega_f^2 C_{LP2} \cdot \frac{1}{R_0 \Omega_c}} = \frac{R_0}{\omega_f^2 C_{LP2} \cdot \frac{1}{R_0 \Omega_c}} = \frac{600}{\omega_f^2 C_{LP2} \cdot \frac{1}{R_0 \Omega_c}} = 117.7 \text{ mH}$

of finite GB of the operational amplifiers we select To realize the inductor we select $R_5 = \frac{1}{\omega_c C_4} = \frac{1}{4000 \cdot 10 \cdot 10^{-9}} = 25 \,\mathrm{k}\Omega \,.$ $Z_2 = Z_3 = R = 10 \text{ k}\Omega$ $Z_4 = 1/sC_4$ and $Z_5 = R_5$. In order to minimize the effect In order to simulate an inductor we select $Z_1 = R_1$, $R_1 = \frac{117.7 \cdot 10^{-3}}{25000 \cdot 10 \cdot 10^{-9}} = 471 \ \Omega$ $Z_{in} = sL_2 = \frac{R_1 R_3}{R_2} sC_4 R_5 = s117.7 \cdot 10^{-3}$ The input impedance to a PIC is $Z_{in} = \frac{Z_1 \cdot Z_3}{Z_2 \cdot Z_4} \cdot Z_5$. $C_1 = \omega_I^2 L_1 = \omega_I^2 L_{LP1}' \cdot \frac{R_0}{\Omega_c}$ and = 235 nF $\omega_c C_4 R_5 = 1 \quad V_1 \bigcirc$ II V $\pm c_1$ N С. $R_2 \gtrsim$ R_2 $\stackrel{_{\scriptscriptstyle 2}}{\stackrel{_{\scriptscriptstyle 2}}{\scriptstyle}} \bigotimes V_2$ V_2 +

8.4 The specification correspond to a HP filter. First we transform the specification to a specification for a corresponding LP filter. $m = 200 \ 10^5 2\pi \ rad/s \ m = 50 \ 10^3 2\pi \ rad/s \ We select m = 50 \ - m$ 8:3

 $\omega_c = 200 \ 10^5 \ 2\pi \ rad/s, \ \omega_s = 50 \ 10^3 \ 2\pi \ rad/s.$ We select $\omega_l = \omega_c \Longrightarrow \Omega_c = \omega_c$ We get for the LP filter $\Omega_s = \omega_l^2 / \omega_s = (200 \cdot 10^3 \ 2\pi)^2 / (50 \cdot 10^3 \ 2\pi) =$

 $C_1 = C_1' \cdot \frac{1}{R_0 \omega_0} = 655.41 \text{ pF} = C_3$ $L_2 = L_2' \cdot \frac{R_0}{\omega_0} = 480.2986 \text{ H. The grounded inductor can be replaced with a PIC with the input}$ Denormalization with respect to $R_0 = R_L = 600 \ \Omega$ and $\omega_l = \omega_c = 200 \cdot 10^5 \ 2\pi$ rad/s yields

08

79

84

8.13

8.14 For a GIC with $Z_1 = 1/sC_1$, $Z_2 = R_2$, $Z_3 = R_3$, $Z_4 = R_4$, $Z_5 = 1/sC_5$

$$Z_{In}(s) = \frac{Z_1 Z_3}{Z_2 Z_4} Z_5 = \frac{\frac{1}{sC_1} R_3}{R_2 R_4} \frac{1}{sC_5} = \frac{R_3}{R_2 R_4 C_1 C_5} \frac{1}{s^2} = \frac{1}{D_s^2}$$

We select $R_4 C_5 = 1/\omega_{critical} = 1/10^3 = 10^{-3}$ where we assume that $\omega_{critical} = 0$

11 D ١١ V $\overline{R_2C_1}\omega_{critial}$ κ_3 $\frac{1}{D} = \frac{1}{D} = R_3 / C_1 R_2 = R_4 C_5 \cdot 10^6 = 10^3$ 10⁶ rad/s

For $D = 10^{-6}$ Fs, we select, for example, $R_3 = R_2 = 10$ k $\Omega \Rightarrow C_1 = 1$ pF $R_2 R_4 C_1 C_5$

8.15 We multiply all elements with 1/s

ST 256 Ex

260EX

