9. WAVE ACTIVE FILTERS

9.1 $s_{11} = (G_1 - G_2 - Y)/(G_1 + G_2 + Y)$ $s_{21} = 2/\Delta$ $s_{12} = 2R_1G_2/\Delta$ Determine first the \mathbbm{X} matrix for a shunt admittance. We get S = $\frac{1}{Z+2R} \begin{pmatrix} Z, 2R \\ 2R, Z \end{pmatrix}$ using the theorem with a series impedance embedded between two gyrators. We $s_{22} = (G_2 - G_1 - Y)/(G_1 + G_2 + Y)$ $s_{21} = 2G_1/(G_1 + G_2 + Y)$ After simplification we get $s_{22} = -(1 + YR_1 - R_1G_2)/\Delta$ $s_{11}=(1-YR-1)/\Delta$ Alternatively, the scattering matrix for a series impedance Z is according to Eq. (9.20) $s_{12} = 2G_2/(G_1 + G_2 + Y)$ $\Delta = 1 + YR_1 + R_1G_2$ i.e., K = $\begin{pmatrix} 1, 0 \\ Y, 1 \end{pmatrix}$. Inserting A = 1, B = 0, C = Y and D = 1 into Eq. (9.19) yields $V_1 = Y(I_1 - I_2)$ $V_1 = V_2$ $s_{11} = -Y/(2G+Y)$ $s_{22} = -Y/(2G+Y)$ $s_{21} = 2G/(2G+Y)$ $s_{12} = 2G/(2G+Y)$

get a shunt admittance $Y = Z/R^2$. Hence, a series impedance with $Z = YR^2$ yields

$$S = \frac{1}{Y+2G} \begin{bmatrix} Y & 2G \\ 2G & Y \end{bmatrix}.$$

The gyrators correspond, according to Figure 9.9, to sign-inversion of the reflected waves. Hence we change the signs of the factor that is multiplied with A_2 . The scattering matrix for a gyrator is

$$\begin{bmatrix} B_1 \\ B_2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}.$$
 We get the scattering matrix for an embedded two-port
$$\begin{bmatrix} B_1 \\ B_2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} \begin{bmatrix} 0 & -1 \\ A_2 \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} -s_{21} & -s_{22} \\ s_{11} & s_{12} \end{bmatrix} \begin{bmatrix} 0 & -1 \\ A_2 \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} -s_{22} & s_{21} \\ s_{12} & -s_{11} \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$
 and with the serie impedance $Z = YR^2$ we get $S_Y = \frac{1}{Y + 2G} \begin{bmatrix} -Y & 2G \\ 2G & -Y \end{bmatrix}$

9.2 We have the incident and reflected waves to a port a = v + Ri and b = v - Ri where all variables are sinusoidals. This yields V = (a + b) and I = (a - b)/R where V and I are r.m.s. values. The power into a port is: $P = real\{VI^*\} = (a + b)(a - b)/R = (a/2 - b/2)/R = G(a/2 - b/2)$

9.3 We get $L_1' = 2 R_0 \tau_5$ $C_1' = \tau_6/(2R_0)$ $L_2' = R_0 \tau_3/2$ $C_2' = 2\tau_4/R_0$ $L_3' = 2 R_0 \tau_2$ $C_3' = \tau_1/(2R_0)$ and $\tau_1 = 2\Omega_2/\omega_1^2 L_3$ $\tau_4 = C_2/2\Omega_2$

 $\begin{array}{ll} L_3'=2\ R_0\tau_2 & C_3'=\tau_1/(2R_0)\\ \text{and}\\ \tau_1=2\Omega_2/\omega_1^2L_3 & \tau_4=C_2/2\Omega_2\\ \tau_2=L_3/2\Omega_2 & \tau_5=L_1/2\Omega_2\\ \tau_3=2\Omega_2/\omega_1^2C_2 & \tau_6=2\Omega_2/\omega_1^2L_3\\ \text{The constant } R_0>0 \text{ is arbitrary and affects only the impedance level in the wave two-ports.} \end{array}$

Signal Parallel resonance Gyrator Circuit Cyrator ٣_٣ P _-5 L ч ٦ 4 $\Delta^{\underline{L}}$ circuit Parallel resonance 5 ⁶ : A₂ Load 바 معر

9.4 A crossover network has not very high stopband attenuation in the two stopbands. Hence, we may realize a lowpass filter and use to complementary output for the highpass part. We get

where the inductances and yield the t-factors $\tau_L = L/2R$ and $\tau_C = RC/2$, respectively.

5.0

- 9.6 According to Feldtkellers Eq. (9.37) we have: $|s_{11}|^2 + |s_{21}|^2 = 1$ In this case, we estimate that $|s_{11}| \le 20$ dB in the passband, i.e., the maximum of the magnitude of reflection function is less than $|s_{11}| = 10^{-Amax \cdot s_{11}/20} = 10^{-(20/20)} = 0.1$ and
- $|s_{21}| = \sqrt{1 |s_{11}|^2} = 0.994987 \Rightarrow A_{max} = 0.043648 \text{ dB}$

98