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Scaling of Signal Levels

 

“Every little bit helps”

 

Measures must also be taken to prevent overflow from occurring too
often, since overflows cause large distortion. 

The probability of overflow can be reduced by inserting scaling multipli-
ers that only affect signal levels inside the filter and not the poles and
zeros. 

Scaling is not required in floating-point arithmetic since the exponent is
adjusted so that the mantissa always represents the signal value with full
precision.
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An important advantage of using two’s-complement representation for
negative numbers is that temporary overflows in repeated additions can be
accepted if the final sum is within the proper signal range. 

The incident signal to a multiplier with a noninteger coefficient must not
overflow, since that would cause large errors. 

 

Safe Scaling

 

One strategy used to choose the scaling coefficient can be derived in the
following way. The signal in the scaling node is given by
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overflow node. The magnitude of the output signal is bounded by

where

In this scaling approach, we insert a scaling
multiplier(s), 

 

c

 

, between the input and the
critical overflow node. 

The resulting impulse response becomes
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The magnitude of the scaled input signal to the multiplier will be equal to,
or less than, the magnitude of the input signal of the filter. 

The input to the multiplier will never overflow if the input to the filter does
not overflow. 

This scaling policy is therefore called 

 

safe scaling

 

. 

The safe scaling method is generally too pessimistic since it uses the avail-
able signal range inefficiently. 

The safe scaling method is suitable for short FIR filters because the prob-
ability for overflow is high for a filter with a short impulse response.

It is sometimes argued that parasitic oscillations caused by overflow can
not occur if the filter is scaled according to the safe scaling criterion. 

However, this is not correct since abnormal signal values can occur due to
malfunctioning hardware—for example, in the memory (delay) elements
due to external disturbances (e.g., ionic radiation and disturbances from
the supply lines). 
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L2-Norm

The L2-norm is simple to compute by using Parseval’s relation which
states that the power can be expressed either in the time domain or in the
frequency domain. We get from Parseval’s relation
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The values of Lp-norms are illustrated below for the second-order section
having the transfer function
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Scaling 

The first step in scaling a filter is to determine the appropriate Lp-norm
that characterizes the input signal. 

Generally, we distinguish between wide-band and narrow-band input sig-
nals. 

Jackson has derived the following bound on the variance of the signal in
the critical node v

where Fv(e
jwT) is the frequency response to the critical node v and Sx(e

jwT)
is the power spectrum of the input signal. 
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Scaling of Wide-Band Signals

A wide-band input signal is characterized by the
L•-norm, . 

Hence,  and the filter should there-
fore be scaled such that , where c £ 1

for all critical nodes.
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Scaling of Narrow Band Signals

The L1-norm,  characterizes a sinusoidal or narrow-band signal. 

From 

we find, with q = 1 and p = •, that the upper bound for the variance of the
signal in the critical node is determined by . 

Thus, the filter should be scaled such that the maximum value of 

=  £ 1 for all critical nodes. 
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Round-Off Noise

A simple linear model of the quantization operation in fixed-point arith-
metic can be used if the signal varies over several quantization levels,
from sample to sample, in an irregular way. 

The quantization of a product

 

is modeled by an additive error

where e(n) is a stochastic process.

Normally, e(n) can be assumed to be white noise and independent of the
signal. 

The density function for the errors is often approximated by a rectangular
function. 
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However, the density function is a discrete function if both the signal
value and the coefficient value are binary. 

The difference is only significant if only a few bits are discarded by the
quantization. The average value and variance for the noise source are

where 
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 = Q2/12, Q is the data quantization step, and Qc is the coefficient quan-
tization step. 

For long coefficient wordlengths—the average value is close to zero for
rounding and –Q/2 for truncation. 

Correction of the average value and variance is only necessary for short
coefficient wordlengths, for example, for the scaling coefficients.

A digital filter with M quantization points has a DC offset of

 

where gi(n) are the impulse responses measured
from the noise sources to the output of the filter. 
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The noise sources contribute to the noise at the output of the filter. The
variance at the output, from source i, is

The variance of the round-off noise at the output is equal to the sum of the
contributions from all the uncorrelated noise sources
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Coefficient Sensitivity

Consider the LSI network which is described by

We get the transfer function

The transfer function from the input to the multiplier is

and the transfer function from the output of the multiplier to the output of
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the network is

Taking the derivative of the transfer function, H, with respect to the coef-
ficient, a, leads to the main result

where F is the transfer function from the input of the filter to the input of
the multiplier and G is the transfer function from the output of the multi-
plier to the output of the filter. 
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Sensitivity and Round-Off Noise

Fettweis has shown that coefficient sensitivity and round-off noise are
closely related. Jackson has derived the following lower bounds on round-
off noise in terms of the sensitivity.

Let Fi be the scaled frequency response from the input of the filter to the
input of the multiplier ai, and Gi the frequency response from the output
of the multiplier to the output of the filter. For a scaled filter we have

 = 1 for all critical nodes i = 0, 1, …, n

The round-off noise variance at the output of the filter is

We get, using Hölder’s inequality1, for p = 2

1. Hölders inequality: 

Fi p

sye
2 si

2 Gi 2
2

i 0=

n

Â si
2 Fi p

Gi 2
2

i 0=

n

Â= =

FG 1 F p G q    , £ 1
p
--- 1

q
---+ 1      p q 1≥, ,=

DSP Integrated Circuits Department of Electrical Engineering larsw@isy.liu.se
Lars Wanhammar Linköping University http://www.es.isy.liu.se/

18

and 

This is a lower bound of the noise variance for a filter scaled for wide-
band input signals. 

Another lower bound that is valid instead for L•-norm scaling

These two bounds are important, since they show that a structure with
high sensitivity will always have high round-off noise and requires a
longer data wordlength. 
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