DSP IC, Solutions 1

1 DSP INTEGRATED CIRCUITS

1.1 a) See sections 1.6, 1.7.3
b) See section 1.6.3
c) See chapter 1

1.2

1.3

1.4

1.6

1.7

a) A specification specifies the goals that is going to be achieved

b)

a)

b)

and a procedure to verify or validate that these goals has been
accomplished.
Example: See CCITT H.261, page 8.

Only the inputs and the outputs and the function of the
module is described in a behavioral description.

Examples:

Behavioral description: Transfer function of a filter, state-
space representation of a control system, and amplifier.
Non-behavioral description: LC ladder filter and emitter-
follower.

function Abstraction(N:Integer): Integer;
begin
Abstraction := N div 2;
end;

function noAbst(N:Integer): Integer;
begin
noAbst := N div a_global;
end;

Repeated specification—synthesis steps — validation/verification
steps..

The system is partitioned into a hierarchy of modules (abstrac-
tions). Any regularity is exploited.

ASIC: Less power consumption, chip area, higher throughput,
more costly design process, longer design time, less flexibility,

Standard DSPs: Flexible, design errors can easily be corrected,
easy to update as better DSPs becomes available, well-known
design process, high power consumption, higher unit cost, low

throughput,
1
]) In(n] n
Since, we have lim (): lim =0
n—co N n—o nOl—l

Hence In(n) grows no faster than n< for o. > 0.

) n]
We have lim — = lim

k k nk—l . nk

a" n—e anin(a) A an nin(@) " 0

Nn—oo

Hence nK grows no faster than an.

1.8

1.10

DSP IC, Solutions

In order to demonstrate the difference in complexity we compare
algorithms with different complexity that are executed on a 1
MIPS computer. Notice, the comparatively slow growth of the two
first algorithms while the last grows very fast.

Algorithm | O(n) O(n loga(n)) n2 n3
10 10 ps 33 s 100 s 1ms
100 100 ps 664 s 10 ms 1s
1000 1ms 9.97 ms 1s 16.7 min
10000 10 ms 133 ms 100 s 278 h
100000 |[100ms 19.93 s 2.8h 31 710 years

entity Full_Adder is
port(X, Y, Carry_in: in bit; Sum, Carry: out bit);
end Full_Adder;
architecture Behavioral_View of Full_Adder is
begin
process
variable n: integer;
constant Sum_vector: bit_vector (0 to 3) :="0101";
constant Carry_vector: bit_vector (0 to 3) :="0011";
begin
wait on X, Y, Carry_in;
n :=0;
if X="1"thenn:=n+1;end if;
if Y="1"thenn:=n+1; end if;
if Carry_in="1"then n:=n+1; end if;
Sum <= Sum_vector(n) after 3 ns;
Carry <= Carry_vector(n) after 2 ns;
end process;
end Behavioral_View;
architecture Data_Flow_View of Full_Adder is
signal Temp: bit;
begin
Temp <= X or Y after 1 ns;
Sum <= Temp or Carry_in after 2 ns;
Carry <= (X or Y) or (Temp and Carry_in) after 1 ns;
end process;
end Data_Flow_View;
architecture Structural_View of Full_Adder is
component Half_Adder port(A, B: in bit; S, C: out bit);
end component;
component OR_Gate port(A, B: in bit; Out: out bit);
end component;
signal Templ, Temp2, Temp3: bit;

begin

u1l: Half_Adder port map(X, Y, Templ, Temp2);

u2: Half_Adder port map(Temp3, Carry_in, Temp3, Sum);
u3: OR_Gate port map(Templ, Temp3, Carry);

end Structural_View;

