
DSP IC, Solutions 1

1 DSP INTEGRATED CIRCUITS

1.1 a) See sections 1.6, 1.7.3
b) See section 1.6.3
c) See chapter 1

1.2 a) A specification specifies the goals that is going to be achieved
and a procedure to verify or validate that these goals has been
accomplished.
Example: See CCITT H.261, page 8.

b) Only the inputs and the outputs and the function of the
module is described in a behavioral description.
Examples:
Behavioral description: Transfer function of a filter, state-
space representation of a control system, and amplifier.
Non-behavioral description: LC ladder filter and emitter-
follower.

c) function Abstraction(N:Integer): Integer;
begin

Abstraction := N div 2;
end;

function noAbst(N:Integer): Integer;
begin

noAbst := N div a_global;
end;

1.3 a) Repeated specification–synthesis steps – validation/verification
steps..

b) The system is partitioned into a hierarchy of modules (abstrac-
tions). Any regularity is exploited.

1.4 ASIC: Less power consumption, chip area, higher throughput,
more costly design process, longer design time, less flexibility, ….

Standard DSPs: Flexible, design errors can easily be corrected,
easy to update as better DSPs becomes available, well-known
design process, high power consumption, higher unit cost, low
throughput, ….

1.6 Since, we have lim
n→∞

ln(n)
nα = lim

n→∞

1
n

α nα−1
 = 0

Hence ln(n) grows no faster than nα for α > 0.

1.7 We have lim
n→∞

nk

an = lim
n→∞

k nk–1

an ln(a) = lim
n→∞

nk

an
k

n ln(a) = 0

Hence nk grows no faster than an.

2 DSP IC, Solutions

1.8 In order to demonstrate the difference in complexity we compare
algorithms with different complexity that are executed on a 1
MIPS computer. Notice, the comparatively slow growth of the two
first algorithms while the last grows very fast.

Algorithm O(n) O(n log2(n)) n2 n3

10 10 µs 33 µs 100 µs 1 ms
100 100 µs 664 µs 10 ms 1 s
1000 1 ms 9.97 ms 1 s 16.7 min
10000 10 ms 133 ms 100 s 278 h

100000 100 ms 19.93 s 2.8 h 31 710 years

1.10 entity Full_Adder is
port(X, Y, Carry_in: in bit; Sum, Carry: out bit);

end Full_Adder;
architecture Behavioral_View of Full_Adder is
begin

process
variable n: integer;
constant Sum_vector: bit_vector (0 to 3) := "0101";
constant Carry_vector: bit_vector (0 to 3) := "0011";

begin
wait on X, Y, Carry_in;
n :=0;
if X = '1' then n := n + 1; end if;
if Y = '1' then n := n + 1; end if;
if Carry_in = '1' then n := n + 1; end if;
Sum <= Sum_vector(n) after 3 ns;
Carry <= Carry_vector(n) after 2 ns;

end process;
end Behavioral_View;
architecture Data_Flow_View of Full_Adder is
signal Temp: bit;
begin

Temp <= X or Y after 1 ns;
Sum <= Temp or Carry_in after 2 ns;
Carry <= (X or Y) or (Temp and Carry_in) after 1 ns;
end process;

end Data_Flow_View;
architecture Structural_View of Full_Adder is
component Half_Adder port(A, B: in bit; S, C: out bit);
end component;
component OR_Gate port(A, B: in bit; Out: out bit);
end component;
signal Temp1, Temp2, Temp3: bit;
begin
U1: Half_Adder port map(X, Y, Temp1, Temp2);
U2: Half_Adder port map(Temp3, Carry_in, Temp3, Sum);
U3: OR_Gate port map(Temp1, Temp3, Carry);
end Structural_View;

