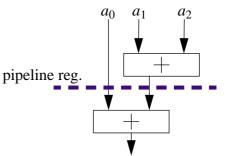
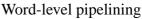
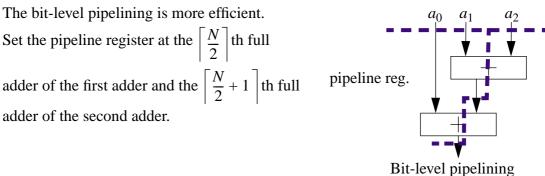
- 11.1 Assume that the input data are prescaled so that no overflow exits, assume also that the bit-parallel adder are two ripple-carry-adders.
 - (a) The addition time for adder 1 and 2 is $(N-1)t_{carry} + t_{sum}$. Note that the addition for adder 2 can start as the LSB in the sum of a_1 and a_2 is available, i.e., the delay time is only t_{sum} .


The total addition time is $((N-1)t_{carry} + t_{sum}) + t_{sum} = 19t_{carry} + 2t_{sum} = 42$ ns


(b) The pipelining can be inserted at both word-level and bit-level. The latency is two clock periods, where one clock period must be larger than $(N-1)t_{carry} + t_{sum}$, or 40 ns. For the word-level, the new throughput 1 1


The bit-level pipelining is more efficient.

Set the pipeline register at the $\left\lceil \frac{N}{2} \right\rceil$ th full

is
$$\frac{1}{(N-1)t_{carry} + t_{sum}} = \frac{1}{40 \times 10^{-9}}$$
 (sample/s).
or 25 Msample/s.

The addition time is

adder of the second adder.

$$max\left\{\left(\left\lceil\frac{N}{2}-1\right\rceil\right)t_{carry}+2t_{sum},\left(N-\left\lceil\frac{N}{2}\right\rceil-1\right)t_{carry}+t_{sum}\right\}=22 \text{ ns.}$$

The new throughput is about 45 Msample/s.

The latency in this case is to clock periods with clock period no less than 22 ns.