11.5 a) Block diagram for bit-serial multiplier with coefficient $\alpha=(0.0101)_{2}$ is shown below.

If the most significant bit in the coefficient is 0 , then the product for this bit is always 0 and, hence, the result is always 0 or the output from this bit can be replaced with a 0 . The resulting block diagram is shown bellow.

For the same reason, we can simplify the next significant bit and the output signal is 0 .

The next significant bit is 1 . The output from AND-gate is therefore equal to the input signal x. Since the input from the preceding bit is zero and the carry D-flip-flop is reset to 0 at the beginning, the carry output from this bit is 0 . The sum for the addition is x. Therefore this bit can be replaced with a D-flip-flop.

The coefficient for the next bit is 0 , with the reason, the carry and the input is always 0 .
Therefore we can simplify this bit to a D-flip-flop.

The coefficient at the last significant bit is 1 and should add result from the previous bit. There is no simplification at this bit. The resulting multiplier is shown below.

b) Control signal: assume that the word length is W_{d} for the data and W_{c} for the coefficient. Before the computation, all carry D-flip-flops have to reset to 0 . The multiplication have to take $W_{d}+W_{c}-1$ clock cycles, where $W_{c}-1$ clock cycles are needed for sign extension.
c) A new multiplication can started after $W_{d}+W_{c}-1=12+5-1=16$ clock cycles. In some case, one extra clock cycle is required for the reset of all D-flip-flops. This depends on the ways of realization.
d) Verification

x	v 1	v 2	v 3	v 4	v 5	y
0	0	0	0	0	0	0
1	1	0	0	0	0	1
0	0	1	0	0	0	0
1	1	0	1	0	1	0
-	1	1	0	1	1	0
-	1	1	1	1	1	1
-	1	1	1	1	1	1
-	1	1	1	1	1	1

(MSB)
$\mathrm{X} \alpha=-0.75 \cdot 0.3125=-0.234375=(1.1100010) 2=\mathrm{y}$

