11.6 a) Blockdiagram. A CSDC number C can be written as subtraction between two binary numbers $(C_{+})_{2}$ and $(C_{-})_{2}$, where $(C_{+})_{2}$ is the positive part of the CSDC number (replace the negative ones with zeros) and $(C_{-})_{2}$ is the negative part of the CSDC number (replace the positive ones with zeros and the the negative ones with ones)

 $(C)_{\text{CSDC}} = (C_{+})_2 - (C_{-})_2.$

If the LSB in the binary number x has value of 2^{-n} and the coefficient C is a CSDC number, the product y can be expressed as follows

 $y = Cx = (C_{+} - C_{-})x = C_{+}x + C_{-}(-x) = C_{+}x + C_{-}(x' + 2^{-n}) = C_{+}x + C_{-}x' + C_{-}2^{-n}$ where x' is the bit-wise inversion of x.

In this ease, $\alpha = (0.100\overline{1})_{\text{CSDC}}$ and LSB has a value of 2^{-7} . The product can be computed as $y = C_+ x + C_- x' + C_- 2^{-n} = (0.1000)_2 x + (0.0001)_2 x' + (0.0001)_2 2^{-7}$. The multiplications with $(0.1000)_2$ and $(0.0001)_2$ are only shift operations. Moreover, the shift operation is embedded in the serial/parallel multipliers. The block dia-

gram is shown below.

Obviously this block diagram can be simplified and the simplified block diagram is shown below.

b) Verification with $x = (0.110)_2$.

Х	v1	v2	v3	v4	v5	vб	v7	у	
0	0	0	0	0	1	1	1	0	(LSB)
1	1	0	0	0	0	1	0	1	
1	1	1	0	0	0	0	0	0	

0	0	1	1	0	1	0	0	1	
-	0	0	1	1	1	0	1	0	
-	0	0	0	1	1	1	1	1	
-	0	0	0	0	1	1	1	0	
-	0	0	0	0	1	1	1	0	(MSB)

 $x{\cdot}\alpha=0.75\,\cdot\,0.4375=0.328125=(0.0101010)2=y$