11.6 a) Blockdiagram. A CSDC number C can be written as subtraction between two binary numbers $\left(C_{+}\right)_{2}$ and $\left(C_{-}\right)_{2}$, where $\left(C_{+}\right)_{2}$ is the positive part of the CSDC number (replace the negative ones with zeros) and $\left(C_{-}\right)_{2}$ is the negative part of the CSDC number (replace the positive ones with zeros and the the negative ones with ones)

$$
(C)_{\mathrm{CSDC}}=\left(C_{+}\right)_{2}-\left(C_{-}\right)_{2} .
$$

If the LSB in the binary number x has value of 2^{-n} and the coefficient C is a CSDC number, the product y can be expressed as follows
$y=C x=\left(C_{+}-C_{-}\right) x=C_{+} x+C_{-}(-x)=C_{+} x+C_{-}\left(x^{\prime}+2^{-n}\right)=C_{+} x+C_{-} x^{\prime}+C_{-} 2^{-n}$ where x^{\prime} is the bit-wise inversion of x.
In this ease, $\alpha=(0.100 \overline{1})_{\text {CSDC }}$ and LSB has a value of 2^{-7}. The product can be computed as $y=C_{+} x+C_{-} x^{\prime}+C_{-} 2^{-n}=(0.1000)_{2} x+(0.0001)_{2} x^{\prime}+(0.0001)_{2} 2^{-7}$. The multiplications with $(0.1000)_{2}$ and $(0.0001)_{2}$ are only shift operations. Moreover, the shift operation is embedded in the serial/parallel multipliers. The block diagram is shown below.

Obviously this block diagram can be simplified and the simplified block diagram is shown below.

b) Verification with $x=(0.110)_{2}$.

x	v 1	v 2	v 3	v 4	v 5	v 6	v 7	y
0	0	0	0	0	1	1	1	0
1	1	0	0	0	0	1	0	1
1	1	1	0	0	0	0	0	0

```
0
- 0
- 0}0
- 0}000
- 0
x}\cdot\alpha=0.75\cdot0.4375=0.328125=(0.0101010)2=
```

