
11.1 Assume that the input data are pre-scaled so that no overflow exits, assume also that the
bit-parallel adder are two ripple-carry-adders.
(a) The addition time for adder 1 and 2 is . Note that the addition for adder

2 can start as the LSB in the sum of and is available, i.e., the delay time is only .

The total addition time is
ns

(b) The pipelining can be inserted at both
 word-level and bit-level.
The latency is two clock periods, where one
clock period must be larger
than , or 40 ns.

For the word-level, the new throughput

is (sample/s),

or 25 Msample/s.

The bit-level pipelining is more eff icient.

Set the pipeline register at the th full

adder of the first adder and the th

full adder of the second adder.

The addition time is

ns.

The new throughput is about 45 Msample/s.
The latency in this case is to clock periods with clock period no less than 22ns.

N 1–()tcarry tsum+

a1 a2 tsum

N 1–()tcarry tsum+() tsum+ 19tcarry 2tsum+ 42= =

a0

pipeline reg.

Word-level pipelining

a1 a2

N 1–()tcarry tsum+

1
N 1–()tcarry tsum+

1

40 10
9–×

-----------------------=

a0

pipeline reg.

Bit-level pipelining

a1 a2

N
2

N
2
---- 1+

max
N
2
---- 1–

 tcarry 2tsum+ N N
2
---- 1––

 tcarry tsum+,

22=

11.2 Multiplication with Booth recoding for .

11.3 a) D = 13 · 11 · 9 · 7 · 5 · 4 = 180180 or log2(180180) = 17.46 bits.
b) D = m1 · m2 · ...m7 = 8 485 840 800 which is greater than 232.

11.4 (a) and . The sign extension circuit extends the coefficient to

 bits, or, .

The multiplication with bit-serial multiplier is shown below.

x S4 S3 S2 S1 C4 C3 C2 C1 C0 y

reset 0 0 0 0 0 0 0 0 0 0 0 (LSB)

1 1 1 1 0 0 0 0 0 0 1

0 1 1 1 1 0 0 0 0 0 0

1510 13–()10×

11 00 11

00 11 11

+A -0 -A

00 11 01

00 00 11

00 00 00

00 00 11

00 00 00

11 00 11

11 00 11 11 01

11 01

01

01

Y

X

A -13

15

Recoded multiplier operation

Add -A

×

+

+

+

-195

Shift 2-bit

Shift 2-bit

Add -0

Add +A

a 1,1101= x 1,001= x

Wd Wc 1–+ 5 4 1–+ 8= = xext 11111,001=

FA

D

FA

D

D FA

D

D FA

D

D FA

D

D

& & &&&

Sign
Ext.

x

y
C4 C3 C2 C1 C0

S1S2S3S4

a0 a1 a2 a3 a4

Serial/parallel multiplier

x 3–

x 2–

The result is .

.

(b) The S/P multiplier in figure 11.15 needs clock periods to process

one data, so the throughput is sample per clock period.

With S/P multiplier in Figure 11.45, the throughput is doubled, i.e., sample per clock

period.

11.5 a) Block diagram for bit-serial multiplier with coefficient is shown as fol-

lowing

If the most significant bit in the coefficient is 0, then the product for this bit is always 0
and hence the result is always 0 or the output from this bit can be replaced with a 0. The
resulting block diagram is shown bellow.

For the same reason, we can simplify the next significant bit and the output signal is 0.
The next significant bit is 1. The output from AND-gate is therefore equal to the input sig-
nal x. Since the input from the preceding bit is zero and the carry D-flip-flop is reset to 0
at the beginning, the carry output from this bit is 0. The sum for the addition is x. There-
fore this bit can be replaced with a D-flip-flop.

The coefficient for the next bit is 0, with the reason, the carry and the input is always 0.
Therefore we can simplify this bit to a D-flip-flop.

The coefficient at the last significant bit is 1 and should add result from the previous bit.
There is no simplification at this bit. The resulting multiplier is shown below.

b) Control signal: assume that the word length is for the data and for the coeffi-

cient. Before the computation, all carry D-flip-flops have to reset to 0. The multiplication
have to take clock cycles, where clock cycles are needed for sign

extension.

0 1 1 1 1 0 0 0 0 0 1

1 0 0 0 1 1 1 1 0 1 0

1 0 0 0 0 1 1 1 0 1 1

1 0 0 0 0 1 1 1 0 1 0

1 0 0 0 0 1 1 1 0 1 0

1 0 0 0 0 1 1 1 0 1 0 (MSB)

x S4 S3 S2 S1 C4 C3 C2 C1 C0 y

x 1–

x0

x1

x2

x3

x4

0,001010102 0,164062510=

ax 1,1101()2 1,001()2⋅ 0,1875–()10 0,875–()10⋅ 0,1640625()10= = =

Wd Wc 1–+() 1+

1
16 4 1–+() 1+

1
20
------=

1
10

α 0,0101()2=

Wd Wc

Wd Wc 1–+ Wc 1–

c) A new multiplication can started after
 clock cycles.

In some case, one extra clock cycle is required for the reset of all D-flip-flops. This
depends on the ways of realization.

d) Verification

11.6 a) Blockdiagram. A CSDC number can be written as subtraction between two binary

numbers and , where is the positive part of the CSDC number (replace the

negative ones with zeros) and is the negative part of the CSDC number (replace the pos-

itive ones with zeros and the the negative ones with ones):
.

If the LSB in the binary number has value of and the coeff icient is a CSDC number,

tthe product can be expressed as follows

where is the bit-wise inversion of .

In this execise, and LSB has a value of . The product can be computed

as .

The multiplication with and is only shift operations. Moreover, the shift

operation is embedded in the serial/parallel multipliers. The block diagram is shown below.

Obviously this block diagram can be simplified and the simpli fied block diagram is shown
below.

b) Verification with .

11.7 a) Block diagram is shown below. The numer of 1s in the coefficient is

large and the usual method for optimization does not give too much simplification. A
more optimal simpli fication can be achieved by changing the sign of both data and coeff i-
cient. The changing of sign of a two’s compliment number can be done by bitwise inver-
sion and add 1 at the LSB.

where is the bitwise inversion of .
The optimized block diagram is shown below.

b) Verification

11.8 The simplest way to implement serial/parallel multiplier with fixed coefficient is to
choose between different number representation. We give the representation for the simplest
implementation here and the block diagrams are left to the readers.
(a)

Wd Wc 1–+ 12 5 1–+ 16= =

C

C+()2 C-()2 C+()2

C-()2

C()CSDC C+()2 C-()2–=

x 2
n–

C

y

y Cx C+ C-–()x C+x C- x–()+ C+x C- x' 2
n–+()+ C+x C-x' C-2

n–+ += = = = =

x' x

α 0,1001()CSDC= 2 7–

y C+x C-x' C-2
n–+ + 0,1000()2x 0,0001()2x' 0,0001()22 7–+ += =

0,1000()2 0,0001()2

x 0,110()2=

α 1,11011()2=

y αx α–() x–() α–() x 2
n–

+() α–()x α–()2 n–+= = = =

x x

0,011001()2

(b) , inverse the signs of input data and coefficient(see problem

11.7).

(c) , inverse the signs of input data and coeff i-

cient(see problem 11.7) and use CSDC representation.
(d) , inverse the signs of input data and coefficient.

(e) .

(f) .

11.11 The bit-serial PE can be realized with a parallel-to-serial converter and a serial-to-paral-
lel converter and a serial/parallel multiplier (assume that the word length for is larger than

that of). The block diagram is shown below.

The serial/parallel multiplier can be the same as in Figure 11.15.

11.14 See Chapter 11 for distributed arithmetic.
The number range for the values stored in the ROM must be increased to [–2,þ2[. One
shift-accumulator that can accumulate word with a word length of six bits, i.e., with six
bit-slices, is required.

11.16 The number of inner products that shall be computed are 3, two for internal values and
one for the output. Hence, 3 units are needed. The first unit has 3 inputs, x(n) and two
branches in the recursive part, and 8 words. The second unit has 3 inputs from the first
section and 2 branches from the recursive part, hence, 32 words. The last unit has only
3 inputs, 8 words.

11.17 a) The least significant bit in WROM corresponds to the least significant bit in any of the

coefficients ai. The most significant bit in WROM is determined by the most significant

bit in the ROM. Hence, by the value with the largest magnitude that is stored in the

ROM. This value is equal to: max { , }

That is the sum of all positive coefficients or the negative of the sum of all negative

coefficients. The word length of the ROM, i.e., WROM determine the width of the shift-

accumulator while Wd effect the execution time.

b) The throughput is inversely proportional to the largest value of Wd and WROM.

0,111011()2 1,0000101()2–=

1,011001()2 0,100111()2– 0,101001()2–= =

1,011001()2 0,100101()2–=

0,000001()2

1,000001()2

x

y

Serial/parallel
Multiplier

Pa
ra

lle
l-

to
-s

er
ia

l

Pa
ra

lle
l-

to
-s

er
ia

l
Register

y

productx

Bit-serial PE

ai+∑ ai-∑

11.18 The set of difference equations in computable order is
u2 := a2 x(n) + b1 v3(n)
u6 := a3 x(n) + a4 v5(n) + b2 v7(n) + b3 v8(n)
y(n) := a1 x(n) + c1u2 + c2 u6

v8(n) := v7(n–1)
v7(n) := u6

v3(n) := u2

v5(n) := x(n)
Hence, only three (Distributed arithmetic) units are needed. All units can work in parallel.

11.22 A multiplication between the two complex numbers a + j b and c +j d can be rewritten
Temp1 = c*(a + b)
Temp2 = a*(d – c)
Temp3 = b*(c + d)

Imag part = Temp1+ Temp2 {c(a + b) + a(d – c) = ad + cb}
Real part = Temp1 – Temp3 {c(a + b) – b(c + d) = ac – bd}

11.23 We give only one example here: radix-2 butterfly element(including the twiddle factor
multiplication).
The decimation-in-time and decimation-in-frequency butterfly is shown below:

The twiddle factor multiplication is a complex multiplication. Since we know the coeffi-
cients in advance, we can use distributed arithmetic to reduce the number of real multi-
plications(See section 11.17). The complete shift-accumulator with s/p multiplier is

Unit Inputs Ouput Number of
terms

Number of words in
the ROM

1 x(n), v3(n) u2 2 4

2 x(n), v5(n), v7(n), v8(n) u6 4 16

3 x(n), u2, u6 y(n) 3 8

-

x(0)

x(1)

X(0)

X(1) -

x(0)

x(1)

X(0)

X(1)

Decimation-in-time Decimation-in-frequency

Radix-2 Butterfly Elements

W
p

W
p

shown in Figure 11.45, section 11.15. The radix-2 butterfly element can implemented as
following.

11.25 (a) , The multiplication can be realized as following.

(b) The normal serial/parallel multipier for the same coeeficient can be realized as fol-
lowing, the simplification for the multiplier is omitted here.

Complex
Multiplier

Decimation-in-time

Shimming delay FA

D

FA

D

x(0)

x(1)

X(0)

X(1)

Complex
Multiplier

Shimming delayFA

D

FA

D

x(0)

x(1)

X(0)

X(1)

Decimation-in-frequency

Butterfly Elements

a 21 1 22 1 22+()+()=

D D D D Dx y

Multiplication with a 21 1 22 1 22+()+()=

Sign ext.

D D FA D

D

FA

D

D

x

y

Multiplication with a 21 1 22 1 22+()+()=

(c) The relationship for these two multipliers can be expressed with graph representa-
tion.

As we can see from the graph, they are equivalent.

11.30 Shift-and-add multiplier in VHDL
entity MULT is

port(A_Port, B_Port: in bit_vector(3 downto 0);
M_Out: out bit_vector(/ downto 0);
CLK: in CLOCK;
START: in BIT;
DONE: out BIT);

end MULT;

architecture Shift_Mult of MULT is
begin

process
variable A, B, M: BIT_VECTOR;
variable COUNT: INTEGER;

begin
wait until (START = 1);
A := A_Port; COUNT := 0;
B := B_Port; DONE <=' 0' ;
M := B"0000";
while (COUNT < 4) loop

if (A(0) = '1' = then
M := m + B;

end if;
A := SHR(A, M(0));
B := SHR(M, '0');
COUNT := COUNT + 1;

end loop;
M_Out <= M & A;
DONE <= '1' ;

end process;
end SHIFT_MULT;

4 4

21
1

2
1 5

(a) (b)
Graph representations

16

4
1

2

21

11.33 A bit-parallel implementation of complex multiplier using distributed arithmetic is
implemented in Alcatel Mietec 0.35µm standard CMOS technology. In this bit-parallel com-
plex multiplier, the shift-accumulator in Figure 11.48 is replaced with adder trees.
The main differences between the bit-parallel complex multiplier are: not need serial/parallel
or parallel/serial interface is needed in bit-parallel implementation, the clock frequency is
much more slower in bit-parallel implementation than that of bit-serial implementation, the
glitch inside the bit-parallel multiplier is much larger than the bit-serial one, the accumulation
of partial products can use, for example, tree structures for the bit-parallel implementation, the
bit-serial implementation occupy obviously less area than the bit-parallel counterpart etc. The
most important in the implementation style discussion is to know the advantages and disadvan-
tages for bit-serial and bit-parallel (possible digit-serial) implementations.

