12.1 The number of dice per wafer is
$N_{\text {Dice }} \approx \pi\left(\frac{D_{w}}{2 L_{c}}-1\right)^{2}=\pi\left(\frac{8 \cdot 25.4}{2 L_{c}}-1\right)^{2}=561,263$, and 167 dice.
The active area d is close to 1 for a high-density chip. Thus, $d A D \approx$ 0.95 A $0.03>1$. Hence, we use Murphy-Moores model for the yield

$$
Y=0.5\left[\frac{1-e^{-d A D}}{d A D}\right]^{2}+0.5 \mathrm{e}^{-\sqrt{d A D}}
$$

We have: $d A D=1.425,2.85$, and 4.275. The yield is estimated to: $29.4 \%, 14.7 \%$, and 9.0%.

The cost is estimated to: $\$ 600 \mathrm{Y} / N_{\text {dice }}=\$ 4.66, \$ 15.52$, and $\$ 39.92$ per die. Further, costs for testing, bounding, and packaging are incurred. For a small die, the cost of the package may be dominant.

