12.1 The number of dice per wafer is
$N_{\text {Dice }} \approx \pi\left(\frac{D_{w}}{2 L_{c}}-1\right)^{2}=\pi\left(\frac{8 \cdot 25.4}{2 L_{c}}-1\right)^{2}=561,263$, and 167 dice.
The active area d is close to 1 for a high-density chip. Thus, $d A D$ ≈ 0.95 A $0.03>1$. Hence, we use Murphy-Moores model for the yield

$$
Y=0.5\left[\frac{1-e^{-d A D}}{d A D}\right]^{2}+0.5 \mathrm{e}^{-\sqrt{d A D}}
$$

We have: $d A D=1.425,2.85$, and 4.275. The yield is estimated to: $29.4 \%, 14.7 \%$, and 9.0%. The cost is estimated to: $\$ 600 \mathrm{Y} / N_{\text {dice }}=$ $\$ 4.66, \$ 15.52$, and $\$ 39.92$ per die. Further, costs for testing, bounding, and packaging are incurred. For a small die, the cost of the package may be dominant.
12.4 The excess junction temperature (above $25^{\circ} \mathrm{C}$) is: $T_{j}=172 \cdot 0.4=$ $69{ }^{\circ} \mathrm{C}$. The contribution from excess temperature, process spread, and reduced voltage is

$$
\begin{aligned}
& \tau_{C L \text { req }}=\left(1+3.7510^{-3} \cdot 69\right)(1+0.35)(1+0.3 \cdot 0.25) \tau_{C L} \text { design } \\
&=1.2588 \cdot 1.35 \cdot 1.075 \tau_{C L} \text { design } \\
& 1.827 \tau_{C L \text { design }} \\
& f_{C L \text { design }}=1.827 \cdot f_{C L \text { req }}=1.827 \cdot 50=91.4 \mathrm{MHz}
\end{aligned}
$$

Thus, the circuit should be designed with nominal parameter values to run with a clock frequency that exceeds the required frequency with 83%.

[^0]
[^0]: "Now when our real estate and finance branches are in the red we may have to start to manufacturing something"

