2.5 Determine the largest current through both of the transistors during switching. We have the same current $I_{D n}=-I_{D p}$ and gate-source voltage for the n -device is V_{m} and ($V_{m}-V_{D D}$) for the p-device, respectively. V_{m} is the gate-source voltage when the current is maximum. Since, both devices are in the saturation region we get:

$$
\frac{\mu_{n} C_{o x} W_{n}}{2 L_{n}}\left(V_{m}-V_{T n}\right)^{2}=\frac{\mu_{p} C_{o x} W_{p}}{2 L_{p}}\left(V_{D D}-V_{m}+V_{T p}\right)^{2}
$$

Solving for V_{m} we get $V_{m}=\frac{V_{D D}+V_{T p}+\sqrt{a} V_{T n}}{1+\sqrt{a}}$
where $a=\frac{\mu_{n} W_{n}}{\mu_{p} W_{p}}$
Now, assume that $a=1$, i.e., symmetric switching

$$
\begin{aligned}
\Rightarrow V_{m} & =\frac{V_{D D}+V_{T p}+V_{T n}}{2}=\frac{V_{D D}}{2} \Rightarrow \\
I_{D n} & =\frac{\mu_{n} C_{o x} W_{n}}{2 L_{n}}\left(\frac{V_{D D}}{2}-V_{T n}\right)^{2}= \\
& =\frac{\left(5.610^{-2}\right)(3.9)\left(8.8510^{-12}\right) W_{n}}{(2)\left(10010^{-10}\right) L_{n}}\left(\frac{5}{2}-0.75\right)^{2} \approx 332 \frac{W_{n}}{L_{n}} \quad[\mu \mathrm{~A}]
\end{aligned}
$$

where $C_{o x}=\frac{\varepsilon_{r} \varepsilon_{0}}{T_{o x}}$
Rumors has it that the n - and p -transistors in the inverter that drives the global clock in the Alpha ${ }^{\mathrm{TM}}$ chip (Digital Equipments) has a combined widths of about 10 cm and 14 cm , respectively. The minimum feature size in the CMOS process is a $0.75 \mu \mathrm{~m}$, but the channel length is $0.5 \mu \mathrm{~m}$. The chip runs at 200 MHz and consumes about 30 W at 3.3 V . The number of devices is 1.6810^{6} on a $16.8 \times$ 13.9 mm chip. Current high-performance chips consume 40 to 80 W at 1.8 V .

We guess that $T_{o x} \approx 100 \AA$. We have

$$
\begin{equation*}
\beta=\frac{\mu_{n} \varepsilon W}{T_{o x} L}=\frac{\left(5.610^{-2}\right)(3.9)\left(8.8510^{-12}\right) W}{\left(10010^{-10}\right) L}=19310^{-6} \frac{W}{L} \tag{A}
\end{equation*}
$$

The resulting drain current becomes

$$
I_{D n} \approx 19310^{-6} \frac{1010^{-2}}{0.510^{-6}}=38.6 \text { Amperes }
$$

Obviously, it is not possible to have such a large current! Special measures must be employed in order to avoid such large currents.

