3.27 We form a new, complex-valued sequence from the two real-valued sequences.

$$
z(n)=x(n)+j y(n)
$$

The DFT is $Z(k)=\sum_{\mathrm{n}=0}^{\mathrm{N}-1} z(n) W^{n k}=\sum_{\mathrm{n}=0}^{\mathrm{N}-1} z(n) e^{-j 2 \pi n k / N}$

Now, we compute the complex conjugate of the rotated $Z(k)$ values

$$
Z^{*}(N-k)=\sum_{\mathrm{n}=0}^{\mathrm{N}-1}[x(n)-j y(n)] e^{j 2 \pi n(N-k) / N}
$$

but

$$
e^{-j 2 \pi n(N-k) / N}=e^{-j 2 \pi n} e^{-j 2 \pi n k / N}=e^{-j 2 \pi n k / N}
$$

Hence, we get $Z^{*}(N-k)=\sum_{\mathrm{n}=0}^{\mathrm{N}-1}[x(n)-j y(n)] e^{-j 2 \pi n k / N}$
Adding these two expressions we get $Z(k)+Z^{*}(N-k)=$

$$
\begin{aligned}
& =\sum_{\mathrm{n}=0}^{\mathrm{N}-1}[x(n)+j y(n)] e^{-j 2 \pi n k / N}+\sum_{\mathrm{n}=0}^{\mathrm{N}-1}[x(n)-j y(n)] e^{-j 2 \pi n k / N} \\
& = \\
& =\sum_{\mathrm{n}=0}^{\mathrm{N}-1} 2 x(n) e^{-j 2 \pi n k / N}
\end{aligned}
$$

Hence, $Z(k)+Z^{*}(N-k)=2 X(k)$ and $X(k)=0.5\left[Z(k)+Z^{*}(N-k)\right]$
Similarly, subtracting the two expressions we get

$$
Y(k)=-0.5 j\left[Z(k)-Z^{*}(N-k)\right]
$$

Hence, the DFTs of two real-valued sequences can be computed simultaneously without any significant additional cost. The inverse DFT can be computed in the same way.

