3.5 We need to find a closed formulae for $T(n)$, i.e., for the time required to solve a large problem. We will do this by using the $z$ transform. However, we first make the substitution.

$$
x(m)=\frac{T\left(c^{m}\right)}{b^{m}}
$$

in order to obtain a linear difference equation

$$
x(m)=\left\{\begin{array}{l}
a=0 \\
x(m-1)+\frac{d c^{m}}{b^{m}} \quad m>0
\end{array}\right.
$$

where we for the sake of simplicity have selected MinSize $=1$. Further, we have assumed that the size of the subproblems is a power of $c^{m}$, i.e., the subproblems have sizes: $n / c^{1}, n / c^{2}, n / c^{3}$, etc. Applying the $z$-transform yields

$$
X(z)=z^{-1}[X(z)+x(-1) z]+d \sum_{m=1}^{\infty}\left(\frac{c}{b}\right)^{m} z^{-m}
$$

but the initial value, $m=0$, yields $x(0)=x(-1)+d=a \Rightarrow$

$$
\Rightarrow x(-1)=a-d
$$

$$
\begin{aligned}
X(z) & =z^{-1} X(z)+a-d+d \sum_{m=0}^{\infty}\left(\frac{c}{b}\right)^{m} z^{-m} \\
X(z) & =\frac{z}{z-1}\left[a-d+\frac{d z}{z-\frac{c}{b}}\right]= \\
& =\frac{(a-d) z}{z-1}+\frac{d}{b-c}\left[\frac{b z}{z-1}-\frac{c z}{z-\frac{c}{b}}\right]
\end{aligned}
$$

and

$$
x(m)=a-d+\frac{b d}{b-c}-\frac{c d}{b-c}\left(\frac{c}{b}\right)^{m}=a-d+d \frac{1-\left(\frac{c}{b}\right)^{m+1}}{1-\frac{c}{b}} \Rightarrow
$$

$$
x(m)=a-d+d \sum_{\mathrm{i}=0}^{\mathrm{m}}\left(\frac{c}{b}\right)^{i}, m \geq 0
$$

Thus
$T(n)=T\left(c^{m}\right)=b^{m}\left[a-d+d \sum_{\mathrm{i}=0}^{\mathrm{m}}\left(\frac{c}{b}\right)^{i}\right]=(a-d) b^{m}+d c^{m} \sum_{\mathrm{i}=0}^{\mathrm{m}}\left(\frac{b}{c}\right)^{i}$
but $m=\log _{c}(n)$. Finally we get

$$
T(n)=(a-d) b^{\log _{c}(n)}+d n \sum_{\mathrm{i}=0}^{\log _{c}(n)}\left(\frac{b}{c}\right) i
$$

We have three interesting cases.
Case: b < c
We get: $T(n) \in O\left[(a-d) b^{\log _{c}(n)}+d n \sum_{\mathrm{i}=0}^{\log _{c}(n)}\left(\frac{b}{c}\right) i\right]$
$T(n) \in O\left[(a-d) b^{\log _{c}(n)}\right]+O\left[d n \sum_{\mathrm{i}=0}^{\log _{c}(n)}\left(\frac{b}{c}\right)^{i}\right]=O\left[b^{\log _{c}(n)}\right]+$ $O(n)$
but we have $\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=\lim _{n \rightarrow \infty} \frac{b^{\log _{c}(n)}}{n}=\lim _{n \rightarrow \infty} \frac{b^{\log _{c}(n)} \ln (b)}{n \ln (c)}=$
$=\lim _{n \rightarrow \infty} \frac{\ln (b)}{\ln (c)} \frac{b^{\log _{c}(n)}}{n}=0$

Hence, $T(n) \in O(n)$ since, $b^{\log _{c}(n)}$ grows no faster than $n$.
Case: $b=c$

For $b=c$ we have
$T(n)=(a-d) b^{m}+d n \sum_{\mathrm{i}=0}^{\log _{c}(n)} 1=(a-d) n+d n\left(\log _{c}(c)+1\right)$
and
$T(n) \in O\left[(a-d) n+d n\left(\log _{c}(c)+1\right)\right]=O\left[n \log _{c}(n)\right]$

Since, $\lim _{n \rightarrow \infty} \frac{n}{n \ln (n)}=0$
Case: b > c

We have
$T(n)=(a-d) b^{m}+d n \sum_{\mathrm{i}=0}^{\mathrm{m}}\left(\frac{b}{c}\right)^{i}=(a-d) b^{m}+d c^{m} \frac{1-\left(\frac{b}{c}\right)^{m+1}}{1-\frac{b}{c}}$
$T(n) \in O\left[(a-d) b^{m}+d b^{m} \frac{1-\left(\frac{c}{b}\right)^{m+1}}{1-\frac{c}{b}}\right]=O\left[b^{m}\right]$
Finally we get: $T(n) \in O\left[b^{\log _{c}(n)}\right]=O\left[n^{\log _{c}(b)}\right]$

