3.7 The step response is obtained by accumulating the impulse response values.
$s(n)=\sum_{k=-\infty}^{n} h(k)=\sum_{\mathrm{k}=0}^{\mathrm{n}}(0.8)^{k}-\sum_{\mathrm{k}=0}^{\mathrm{n}}(0.6)^{k}=\frac{1-(0.8)^{n+1}}{1-0.8}-\frac{1-(0.6)^{n+1}}{1-0.6}$
Note that $s(n) \rightarrow H(1)$ as $n \rightarrow \infty$. Proof.
$s(n)=\sum^{\mathrm{n}} h(k) \npreceq \sum^{\infty} h(k) z^{-k}=H(1)$ for $z=1$
In this case we have $s(n) \rightarrow \frac{1}{1-0.8}-\frac{1}{1-0.6}=2.5$ and
$H(1)=\frac{0.2}{(1-0.8)(1-0.6)}=\frac{0.2}{0.2 \cdot 0.4}=2.5$

