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4 DIGITAL FILTERS

4.2 It is necessary and sufficient that the impulse response is
symmetric or antisymmetric.

4.3 For the sake of simplicity let the filter order be odd and N = 4.

H(z) = h(0) + h(1) z–1 – h(1) z–2 – h(0) z–3

Now, for z = 1 we have H(1) = h(0) + h(1) – h(1) – h(0) = 0
Hence, it is not possible to have a lowpass filter, with N = even,
with antisymmetric impulse response since the filter has a zero at
z = 1, i.e., inside the passband. For an even order filter, for
example, N = 5, we have

H(z) = h(0) + h(1) z–1 + h(2) z–2 – h(1) z–3 – h(0) z–4

Now, h(2) must be zero if the filter shall have an antisymmetric
impulse response. Hence, also in this case we have a zero at z = 1.
To summarize, a lowpass filter cannot have an antisymmetric
impulse response.

4.4 The frequency response is

H(ejωT) = a + b e–jωT + c e–j2ωT + b e–j3ωT + a e–j4ωT =

= e–j2ωT  [a  e–j2ωT + b ejωT + c + b e–jωT + a e–j2ωT ] =

= e–j2ωT  [a cos(2ωT) + c + b  cos(ωT)]

Φ(ωT) = arg{ [cos(2ωT) – j sin(2ωT)] } ± nπ = arctan{ 
–sin(2ωT)
cos(2ωT)

 } ± nπ

Φ(ωT) = – 2ωT ± nπ Linear phase

τg(ωT) = – 
∂Φ(ωT)

∂ω
 = – 2T Constant group delay

4.5 H(ejωT) = 
1
4 + 

1
2 e–jωT + 

1
4 e–j2ωT = 

1
2 (1 + cos(ωT)) e–jωT

The magnitude function is |H(ejωT)| = 
1
2 (1 + cos(ωT))

The phase function is Φ(ejωT) = – ωT

The group delay is τ(ωT) = – 
∂Φ(ejωT)

∂ω
 = T
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4.7 Explore the symmetry and antisymmetry in the basis vectors, by
using the linear-phase structure. See Eq.(4.15) and Fig. 4.6.

4.9 Amax = –10 log10(1 – ρ2) = 0.09883 dB
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4.10 The major factors are: the reflection coefficient, τg, element tol-
erances, and element losses.

4.11 The group delay is defined τga = – 
∂Φa(ωT)

∂ω

and the group delay for the digital filter is definedτgd = – 
∂Φd(ωT)

∂ω
The relation between the phase of the analog and digital filter is

Φd(ωT) = Φa(ωa) = Φa(
2
T tan(

ωT
2 ))

We get:

τgd(ωT) = – 
∂Φd(ωT)

∂ω
 = – 

∂Φa(ωa)
∂ωa

 
∂ωa

∂ω
 =

τgd(ωT) = τga(ωa) 

2
T

cos2(
ωT
2 )

 
T
2 = 

τga(
2
T tan(

ωT
2 ))

cos2(
ωT
2 )

The group delay of the digital filter is distorted since the fre-
quency axis is distorted according to Eq.(4.20) and because of the

factor cos2(
ωT
2 ) in the denominator.

4.17 S = 
Z – R
Z + R  where Z = jX for a reactance. Hence,

S = 
jX – R
jX + R  = 

(jX – R)
(jX + R) 

(–jX + R)
(–jX + R) = 1

4.25 If the input values are repeated L times, the corresponding
spectrum is

X(ejωT) = ∑
m=–∞

∞
 x1(m) e–jωmT  = ∑

n=–∞

∞
 x(n)  ∑

k=0

L–1
 e–jωkT e–jωnT =

= ∑
n=–∞

∞
 x(n) 

1 – e–jωLT

1 – e–jωT  e–jωnT =

= ∑
n=–∞

∞
 x(n) e–jω(L–1)T/2 sin(ωLT/2)

sin(ωT/2)
 e–jωnT

Hence, the spectrum is weighted with a 
sin(Lx)
sin(x)  function that

attenuates the unwanted images of the baseband, but it effects
also the passband of interest. Compare this case with a zero-
order-hold D/A converter. However, the attenuation is small and
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the computations must be done at the higher sample rate. Thus,
the computational workload is much higher.

4.27 Interpolate the sample rate by using, for example, a lattice wave
digital filter, with a factor 7. Decimate the sample rate by a factor
4 be retaining only every 4th sample.

4.28 a) Let x(n) denote the input signal. We form a new input signal
according to

xi(m) = x(n) for m = 2n  and = 0 otherwise.

The interpolator is described by the difference equation

y(m) = 
1
2 [xi(m) + xi(m–2)] + xi(m–1)

Only the first factor above contributes with an interpolated
value for m = even since xi(m–1) = 0. In the next sample
interval m = odd. Hence only the second term contributes to
the output, xi(m–1), (= x(n)), while both xi(m) = 0 and xi(m–2) =
0.

b) H(z) = 
1
2 [1 + z–2] + z–1 = 

1
2 z2 [z2 + 2 z + 1]

Selecting a unity gain for the filter we get H(z) = 
z2 + 2 z + 1

4 z2

c) A double pole for z = 0 and a double zero for z = –1

X

Xi

ωT

ωT

Shall be attenuated by the FIR filter

[deg]
ωT

|H|

d) The magnitude of
the Fourier trans-
form is shown be-
low for the origi-
nal input signal,
X , the new input
signal, Xi and the
magnitude func-
tion for the FIR
filter.

e) Ideally the mag-
nitude function
shall be = 1 for 0

≤ ωT  ≤ 
π
2 and = 0

for 
π
2 < ω T  ≤ π.

The phase func-
tion shall be lin-
ear. Obviously,
this is a poor FIR
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filter since the attenuation of the unwanted image is very
poor.

f) h(m) = 
1
4 , 

1
2 , 

1
4 , 0, 0, 0, …

The filter is an FIR filter with length three. The filter order is
2.
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