5.12 a) The node $v(n)$ must be scaled since it is input (after the delay element) to the multiplier with non-integer coefficient. Insert a scale coefficient, c, in front of the filter. The impulse response from the input to the node is:

$$
h_{v}(n)= \begin{cases}0 & , n<0 \\ c b^{n} & , n \geq 0\end{cases}
$$

We get: $\quad S_{v}=\sum_{n=0}^{\infty} h_{v}(n)^{2}=\sum_{n=0}^{\infty} c^{2} b^{2 n}=\frac{c^{2}}{1-b^{2}}=25.2525 c^{2}$
Now, let $S_{v}=1 \Rightarrow c=\frac{1}{\sqrt{25.2525}}=0.198997$
The impulse response from the input to the output is

$$
\begin{aligned}
h(n) & =a_{0} h_{v}(n)+a_{1} h_{v}(n-1)=\left\{\begin{array}{l}
0, n<0 \\
a_{0} c \quad, n=0 \\
a_{0} c b^{n}+a_{1} c b^{n-1}, n \geq 1
\end{array}\right. \\
S_{y} & =\sum_{n=0}^{\infty} h(n)^{2}=\left(a_{0} c\right)^{2}+\sum_{n=1}^{\infty}\left(a_{0} c\right)^{2}\left[b^{n}-b^{n-1}\right]^{2}= \\
& \left.=\left(a_{0} c\right)^{2}\left[1+\frac{(b-1)^{2}}{b^{2}} \sum_{n=1}^{\infty} b^{2 n}\right]=\left(a_{0} c\right)^{2}\left[1+\frac{(b-1)^{2}}{b^{2}} \frac{b^{2}}{1-b^{2}}\right)\right]= \\
& =\left(a_{0} c\right)^{2}\left[1+\frac{1-b}{1+b}\right]=a_{0} 2^{2} 0.02
\end{aligned}
$$

Let $\mathrm{S}_{\mathrm{y}}=1 \Rightarrow \mathrm{a}_{0}=\frac{1}{\sqrt{0.02}}=7.07107$
b) All of the coefficients are non-integers. Hence, there are two noise sources to each "adder". The contribution from c and b is:

$$
\begin{aligned}
& \sigma_{y 1}{ }^{2}=2 \sigma_{0}^{2} \sum_{n=0}^{\infty} h_{\text {noise }}(n)^{2}=2 \sigma_{0}^{2} \sum_{n=0}^{\infty}\left(\frac{h(n)}{c}\right)^{2}= \\
& \sigma_{y 1}{ }^{2}=\frac{2 \sigma_{0}^{2}}{c^{2}} \sum_{n=0}^{\infty} h(n)^{2}=\frac{2 \sigma_{0}^{2}}{c^{2}}
\end{aligned}
$$

Since the filter is scaled.

$$
\sigma_{\mathrm{y} 1}{ }^{2}=\frac{2 \sigma_{0}^{2}}{\mathrm{c}^{2}}=100.5026 \frac{\mathrm{Q}^{2}}{12}
$$

The contribution from σ_{0} and σ_{1} is: $\sigma_{\mathrm{y} 2}^{2}=2 \frac{\mathrm{Q}^{2}}{12}$

$$
\sigma_{\mathrm{y}}^{2}=\sigma_{\mathrm{y} 1}^{2}+\sigma_{\mathrm{y} 2}^{2}=102.5026 \frac{\mathrm{Q}^{2}}{12} \text { where } \mathrm{Q}=2^{-7}
$$

