5.19 Let $E\left(e^{j} \omega T\right)$ be the error function caused by rounding the coefficients. We have:

$$
E\left(e^{j} \omega \mathrm{~T}\right)=\mathrm{e}^{-\mathrm{j} \omega(\mathrm{~K}+1) \mathrm{T}}\left[\delta \mathrm{~h}_{0}+2 \sum_{\mathrm{n}=1}^{\mathrm{K}} \delta \mathrm{~h}_{\mathrm{n}} \cos (\omega \mathrm{nT})\right]
$$

but $\left|\delta h_{n}\right| \leq Q_{d} / 2$. The deviation can be estimated in may ways, for example, the maximal deviation or the variance of the deviation. Here we use an estimate of the maximal deviation:

$$
\begin{aligned}
& \left|E\left(e^{j} \omega \mathrm{~T}\right)\right|=\left|\mathrm{e}^{-j \omega(\mathrm{~K}+1) \mathrm{T}}\left[\delta \mathrm{~h}_{0}+2 \sum_{\mathrm{n}=1}^{\mathrm{K}} \delta \mathrm{~h}_{\mathrm{n}} \cos (\omega \mathrm{nT})\right]\right| \leq \\
& \leq\left|\delta h_{0}+2 \sum_{\mathrm{n}=1}^{K} \delta \mathrm{~h}_{n} \cos (\omega \mathrm{nT})\right| \leq\left|\delta h_{0}\right|+2 \sum_{\mathrm{n}=1}^{K}\left|\delta h_{n} \cos (\omega \mathrm{nT})\right| \leq \\
& \left|\mathrm{E}\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{~T}}\right)\right| \leq\left|\delta h_{0}\right|+2 \sum_{\mathrm{n}=1}^{K}\left|\delta \mathrm{~h}_{\mathrm{n}}\right|
\end{aligned}
$$

Hence, $\left|E\left(\mathrm{e}^{\mathrm{j}} \mathrm{T}^{\mathrm{T}}\right)\right| \leq \frac{\mathrm{Q}}{2}(1+2 \mathrm{~K})=\frac{\mathrm{NQ}}{2}$
(Bound \#l)
Now, assume that the coefficients are randomly rounded and the errors are considered as independent random variables that are uniformly distributed in the interval [-Q/2, Q/2]. The variance is $Q^{2} / 12$. Let eo be the effective value of $E\left(\mathrm{e}^{\mathrm{j}} \mathrm{\omega}^{\mathrm{T}}\right)$ in the passband:

$$
e_{0}^{2}=\frac{1}{f_{c}} \int_{0}^{f_{c}}\left|E\left(\dot{e}^{j} \omega T\right)\right|^{2} \mathrm{~d} \omega T=\sum_{\mathrm{n}=0}^{N-1}\left|\delta h_{0}\right|^{2}
$$

The variance of $e 0^{2}$ is:

$$
\sigma^{2}=\mathrm{E}\left\{\mathrm{e}^{2}\right\}=\frac{\mathrm{NQ}^{2}}{12}
$$

The required coefficient word length is estimated as follows. Let δ_{m} be the acceptable deviation in the passband of the stopband. Now, we must have:

$$
\left|\mathrm{E}\left(\mathrm{e}^{\mathrm{j}} \omega \mathrm{~T}\right)\right|<\delta_{\mathrm{m}}-\delta_{0}
$$

where δ_{0} is the deviation before quantization of the coefficients. Let the level of acceptance of a coefficient set that does not fit the requirements be 5%. Hence the probability the coefficient set does not meet the specification is (assuming a normal distribution):

$$
\mathrm{P}\left(\left|\mathrm{E}\left(\mathrm{e}^{\dot{j} \omega \mathrm{~T}}\right)\right| \geq 2 \sigma_{\mathrm{x}}\right)=\mathrm{P}\left(\frac{\mathrm{E}\left(\mathrm{e}^{\dot{j} \mathrm{~T}}\right) \mid}{\sigma_{\mathrm{X}}} \geq 2\right) \approx 0.05
$$

$$
\begin{gathered}
2\left[1-\Phi\left(\frac{\left|\mathrm{E}\left(\mathrm{e}^{\mathrm{j}} \omega \mathrm{~T}\right)\right|}{\sigma_{\mathrm{x}}}\right)\right]=0.05 \quad \Rightarrow \frac{\left|\mathrm{E}\left(\mathrm{e}^{\dot{j} \omega \mathrm{~T}}\right)\right|}{\sigma_{\mathrm{x}}} \approx 2 \\
\mid \mathrm{E}\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{~T}) \mid \approx 2 \sigma_{\mathrm{x}} \quad \Rightarrow \quad 2 \sigma_{\mathrm{x}} \approx \delta_{\mathrm{m}}-\delta_{0}}\right. \\
\frac{\sqrt{\mathrm{N}} \mathrm{Q}^{2}}{12} \approx \frac{\delta_{\mathrm{m}}-\delta_{0}}{2} \text { and } \mathrm{Q} \approx\left(\delta_{\mathrm{m}}-\delta_{0}\right) \overline{\sqrt{\mathrm{N}}}
\end{gathered}
$$

The number of bits that is required to represent the coefficient depends on the largest coefficient. Hence. lowpass filter. Hence,

$$
\begin{aligned}
& 1-W_{c} \approx \log _{2}\left\{\frac{f_{\text {sample }}}{f_{s}+f_{c}} Q\right\} \approx \log _{2}\left\{\frac{f_{\text {sample }}}{f_{s}+f_{c}}\left(\delta_{m}-\delta_{0}\right) \bar{V} \frac{3}{N}\right\} \\
& W_{c} \approx 1-\log _{2}\left\{\frac{f_{\text {sample }}}{f_{s}+f_{c}}\left(\delta_{m}-\delta_{0}\right) \overline{\sqrt{N}} \frac{3}{N}\right\}
\end{aligned}
$$

For most lowpass filter we have: $\frac{N}{3} \leq \frac{f_{S}-f_{C}}{f_{\text {sample }}}$.

$$
W_{c} \geq 1-\log _{2}\left\{\frac{f_{\text {sample }}}{\left(f_{s}+f_{c}\right)} \sqrt{\frac{f_{\text {sample }}}{f_{s}-f_{c}}} \quad\left(\delta_{m}-\delta_{0}\right)\right\}
$$

In practice, we may select $\delta_{\mathrm{m}}=2 \operatorname{Min}\left\{\delta_{1}, \delta_{2}\right\}=2 \delta_{0}$

$$
\begin{aligned}
& W_{C} \geq 1-\log _{2}\left\{\frac{f_{\text {sample }}\left(f_{\mathrm{s}}+\mathrm{f}_{\mathrm{C}}\right)}{\left.\sqrt{\frac{f_{\text {sample }}}{f_{\mathrm{s}}-\mathrm{f}_{\mathrm{C}}}} \frac{2}{\delta_{\mathrm{m}}}\right\}}\right. \\
& \mathrm{W}_{\mathrm{C}} \geq 1-\log _{2}\left\{\frac{\mathrm{f}_{\text {sample }}}{\left(\mathrm{f}_{\mathrm{s}}+\mathrm{f}_{\mathrm{C}}\right)} \sqrt{\frac{\mathrm{f}_{\text {sample }}}{\mathrm{f}_{\mathrm{s}}-\mathrm{f}_{\mathrm{C}}}}\right\}+\log _{2}\left\{\operatorname{Min}\left\{\delta_{1}, \delta_{2}\right\}\right\}
\end{aligned}
$$

See also: Niedringshaus W.P., Steglitz K., and Kodek D.: An Easily Computed Performance Bound for Finite Wordlength Direct-Form FIR Digital Filters, IEEE Trans. on Circuits and Systems, Vol. CAS-29, No. 3, pp. 191-193, March 1982.

