5.4 For a two-port adaptor we have

$$
\begin{aligned}
& \mathrm{b}_{1}=\mathrm{a}_{2}+\alpha\left(\mathrm{a}_{2}-\mathrm{a}_{1}\right) \\
& \mathrm{b}_{2}=\mathrm{a}_{1}+\alpha\left(\mathrm{a}_{2}-\mathrm{a}_{1}\right) \\
& \alpha=\frac{\mathrm{R}_{1}-\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
\end{aligned}
$$

The pseudo-power entering into the adaptor is

$$
\mathrm{p}=\frac{1}{\mathrm{R}_{1}}\left(\mathrm{a}_{1}^{2}-\mathrm{b}_{1}^{2}\right)+\frac{1}{\mathrm{R}_{2}}\left(\mathrm{a}_{2}^{2}-\mathrm{b}_{2}^{2}\right)
$$

Simple, but long and tedious simplification, yields $p=0$.

