6.4 Using z-transform, the transfer function is

$$
H(z)=Z\{h(n)\}=1+2^{-1}+\ldots+z^{-M}=\frac{1-z^{-(M+1)}}{1-z^{-1}}
$$

which gives $Y(z)=H(z) X(z)=\frac{1-z^{-(M+1)}}{1-z^{-1}} X(z)$
or

$$
Y(z)=z^{-1} Y(z)+X(z)-z^{-(M+1)} X(z)
$$

Apply the inverse z-transform, the corresponding difference equation is

$$
y(n)=y(n-1)+x(n)-x(n-M-1)
$$

The high level language realization is left to the reader. The imporatant sequences inside the loop are
\{read in input
\{read in old input
\{compute
\{overwrite the
\{update
$x(n)\}$
$x(n-M-1)$ and $y(n-1)\}$
$y(n)\}$
$x(n-M-1)$ with $x(n)\}$
$y(n-1)$ with $y(n)\}$

