7.1 a) These butterfly pairs, which computed concurrently, are determined by the relative indices. We assume that the butterflies are labeled with numbers 0 to 7 from top to down for each butterfly in Figure 7.4.

First alternative

Execute butterflies p and $p+N / 4$ simultaneously for all stages, the butterfly pairs are $\{0,4\},\{1,5\},\{2,6\}$, and $\{3,7\}$ for all stages.

Second alternative

Execute butterflies p and $p+N_{s} / 2$ at the first stage, p and $p+N_{s}$ for other stages. Note that $N_{s}=2^{4-\text { stage }}$, the butterflies paies are therefore $\{0,4\},\{1,5\},\{2,6\}$, and $\{3,7\}$ for the first and the second stage, $\{0,2\},\{1,3\},\{4,6\}$ and $\{5,7\}$ for the third stage, and $\{0,1\},\{2,3\},\{4,5\}$, and $\{6,7\}$ for the final stage.
b) Obviously, m ranges from 0 to $3 . N_{s}=2^{n-\text { stage }}$, i.e., $N_{s}=8$ for the first stage,
$N_{s}=4$ for the second stage, $N_{s}=2$ for the third stage, and $N_{s}=1$ for the final stage.
See a) for the range of p-values.

First alternative

$k_{1}=2 N_{s}\left\lfloor m / N_{s}\right\rfloor+\left[m \bmod \left(N_{s}\right)\right]$
$k_{2}=\left\{\begin{array}{lc}k_{1}+N / 4 & \text { Stage }=1 \\ k_{1}+N / 2 & \text { Stage } \geq 2\end{array}\right.$
Stage $=1$:
$2 N_{s}\left\lfloor m / N_{s}\right\rfloor=0$ and $m \bmod \left(N_{s}\right)=m, k_{1}=m, k_{2}=m+N / 4=m+4$,
$k_{1 N_{s}}=k_{1}+N_{s}=m+8$ and $k_{2 N_{s}}=k_{2}+N_{s}=m+4+8=m+12$.
In the same manner, we can determine the $k_{1}, k_{2}, k_{1 N_{s}}$, and $k_{2 N_{s}}$ for the other stage. The result is listed in the following table.

Stage	k_{1}	k_{2}	$k_{1 N_{s}}$	$k_{2 N_{s}}$
1	$0,1,2,3$	$4,5,6,7$	$8,9,10,11$	$12,13,14,15$
2	$0,1,2,3$	$8,9,10,11$	$4,5,6,7$	$12,13,14,15$
3	$0,1,4,5$	$8,9,12,13$	$2,3,6,7$	$10,11,14,15$
4	$0,2,4,6$	$8,10,12,14$	$1,3,5,7$	$9,11,13,15$

Second alternative

$k_{1}=4 N_{s}\left\lfloor m / N_{s}\right\rfloor+\left[m \bmod \left(N_{s}\right)\right]$
$k_{2}=\left\{\begin{array}{cl}k_{1}+N_{s} / 2 & \text { Stage }=1 \\ k_{1}+2 N_{s} & \text { Stage } \geq 2\end{array}\right.$

Stage $=1$:
$4 N_{s}\left\lfloor m / N_{s}\right\rfloor=0$ and $m \bmod \left(N_{s}\right)=m, k_{1}=m, k_{2}=k_{1}+N_{s} / 2=m+4$,
$k_{1 N_{s}}=k_{1}+N_{s}=m+8$ and $k_{2 N_{s}}=k_{2}+N_{s}=m+4+8=m+12$.
In the same way, we can determine the values for $k_{1}, k_{2}, k_{1 N_{s}}$, and $k_{2 N_{s}}$ at each stage. This results the following table.

Stage	k_{1}	k_{2}	$k_{1 N_{s}}$	$k_{2 N_{s}}$
1	$0,1,2,3$	$4,5,6,7$	$8,9,10,11$	$12,13,14,15$
2	$0,1,2,3$	$4,5,6,7$	$8,9,10,11$	$12,13,14,15$
3	$0,1,8,9$	$4,5,12,13$	$2,3,10,11$	$6,7,14,15$
4	$0,4,8,12$	$2,6,10,14$	$1,5,8,13$	$3,7,11,15$

c) We consider the simplification of one indice in the first alternative, the other simplifications are left to the readers. All indices is represented with binary numbers, for example, m is $m=m_{1} \cdot 2^{1}+m_{0}$, where $m_{i}=0,1$. We give only on example for the simplification here, i.e., k_{2}.
Stage $=00: k_{2}=\left(01 m_{1} m_{0}\right)_{2}$
Stage $=01: k_{2}=\left(10 m_{1} m_{0}\right)_{2}$
Stage $=10: k_{2}=\left(1 m_{1} 0 m_{0}\right)_{2}$
Stage $=11: k_{2}=\left(1 m_{1} m_{0} 0\right)_{2}$
which means that $k_{2}=s_{1}+s_{0}, s_{1} \cdot m_{1}+\overline{s_{1}} \cdot \overline{s_{0}}, \overline{s_{1}} \cdot m_{1}+s_{1} \cdot m_{0} \cdot s_{0},\left(\overline{s_{1}}+\overline{s_{0}}\right) \cdot m_{0}$.
Hence the addition is not neccesilly in th ecomputation of k_{2}.
d) Observe that the separation of $\left\{k_{1}, k_{1 N_{s}}\right\}$ and $\left\{k_{2}, k_{2 N_{s}}\right\}$ does not effected by m.

Hence the butterflies operations does not changed except the orders.

