
7.1 a) These butterfly pairs, which computed concurrently, are determined by the relative
indices.
We assume that the butterflies are labeled with numbers 0 to 7 from top to down for each
butterfly in Figure 7.4.
First alternative:
Execute butterflies and simultaneously for all stages, the butterfly pairs are

, , , and for all stages.
Second alternative:
Execute butterflies and at the first stage, and for other stages.

Note that , the butterflies pares are therefore , , , and

 for the first and the second stage, , , and for the third

stage, and , , , and for the final stage.

b) Obviously, ranges from 0 to 3. , i.e., for the first stage,

 for the second stage, for the third stage, and for the final stage.

See a) for the range of -values.

First alternative:

:

 and , , ,

 and .

In the same manner, we can determine the , , , and for the other stage. The

result is listed in the following table.

Second alternative:

Stage

1 0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15

2 0,1,2,3 8,9,10,11 4,5,6,7 12,13,14,15

3 0,1,4,5 8,9,12,13 2,3,6,7 10,11,14,15

4 0,2,4,6 8,10,12,14 1,3,5,7 9,11,13,15

p p N 4⁄+

0 4,{ } 1 5,{ } 2 6,{ } 3 7,{ }

p p Ns 2⁄+ p p Ns+

Ns 24 stage–= 0 4,{ } 1 5,{ } 2 6,{ }

3 7,{ } 0 2,{ } 1 3,{ } 4 6,{ } 5 7,{ }
0 1,{ } 2 3,{ } 4 5,{ } 6 7,{ }

m Ns 2n stage–= Ns 8=

Ns 4= Ns 2= Ns 1=

p

k1 2Ns m Ns⁄ m mod Ns()[]+=

k2

k1 N 4⁄+ Stage 1=

k1 N 2⁄+ Stage 2≥

=

Stage 1=

2Ns m Ns⁄ 0= m mod Ns() m= k1 m= k2 m N 4⁄+ m 4+= =

k1Ns
k1 Ns+ m 8+= = k2Ns

k2 Ns+ m 4 8+ + m 12+= = =

k1 k2 k1Ns
k2Ns

k1 k2 k1Ns
k2Ns

k1 4Ns m Ns⁄ m mod Ns()[]+=

k2

k1 Ns 2⁄+ Stage 1=

k1 2Ns+ Stage 2≥

=

:

 and , , ,

 and .

In the same way, we can determine the values for , , , and at each stage.

This results the following table:

c) We consider the simplification of one index in the first alternative, the other
simplifications are left to the readers.

All indices is represented with binary numbers, for example, is ,

where . We give only on example for the simplification here, i.e., .

:

:

:

:

which means that .

Hence the addition is not necessary in the computation of .

d) Observe that the separation of { , } and { , } does not effected by .

Hence the butterflies operations does not changed except the orders.

7.2 The modification does not differ too much from the Box 7.5. It is left to the readers.
Some variables and procedures should be notified here: Ns initiated with N/2 in stead of
N, the range of the loop variable m should be reduced to [0 ((N/8)-1)], two sets of twid-
dle factor should be generated instead of one, four butterflies are computed concurrently
and four results should be written and read in stead of two.

7.3 In this case we have: Tmin = . The critical path is Tadd + Tmult.

In order to reach the maximal sample rate we will have to either use inter-
leaving or pipelining.

Stage

1 0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15

2 0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15

3 0,1,8,9 4,5,12,13 2,3,10,11 6,7,14,15

4 0,4,8,12 2,6,10,14 1,5,8,13 3,7,11,15

Stage 1=

4Ns m Ns⁄ 0= m mod Ns() m= k1 m= k2 k1 Ns 2⁄+ m 4+= =

k1Ns
k1 Ns+ m 8+= = k2Ns

k2 Ns+ m 4 8+ + m 12+= = =

k1 k2 k1Ns
k2Ns

k1 k2 k1Ns
k2Ns

m m m1 21 m0+⋅=

mi 0 1,= k2

Stage 00= k2 01m1m0()2=

Stage 01= k2 10m1m0()2=

Stage 10= k2 1m10m0()2=

Stage 11= k2 1m1m00()2=

k2 s1 s0+ s1 m1⋅ s1 s0⋅+ s1 m1⋅ s1 m0 s0⋅ ⋅+ s1 s0+() m0⋅, , ,=

k2

k1 k1Ns
k2 k2Ns

m

1
2
--- Tadd Tmult+()

a) Unit time processors

Here we assume that Tadd = Tmult = 1 t.u. The
minimal sample period, Tmin is 1 t.u. and the crit-
ical path 2 t.u.

Pipelining

After pipelining the critical path is split in two
sections of equal length. We can start a new addi-
tion and a new multiplication in each sample
interval. The schedule for processors is shown below.

We will need only one processor of each type and their degree of utilization is
100%.

Interleaving

Interleaving of resources must be done if the criti-
cal path (adder — multiplier) is indivisible. We
will have to start a new set of addition-multiplica-
tion every sample period. The schedule for proces-
sors is shown in the figure to the right.

Now, we need two adders and two multipliers. More processors are needed
since the processing is sequential. Further, their degree of utilization is only
50%.

b) Non unit time processors

Now, assume that Tmult = 3 Tadd and Tadd = 1 t.u. The minimal sample period
will be Tmin = 4/2 = 2 t.u. and the critical path 4 t.u.

Interleaving

If the adder and the multiplier are indivisible we will have the schedule
shown below. We need two processors of each type which will be utilized to
25% and 75%, respectively.

+

T

T

Pipelined filter.

+
*

+
*

+
*

+
*

Schedule for pelined
filter.

+ *

+ *+ *+ *

+ *+ *

Schedule using
interleaving of
resources.

Pipelining

If we pipeline, the critical path will have to
be split in two parts of length 2. This is
assuming that the multiplier can be split
into two parts. The pipelined filter is shown
to the right while the operation schedule
for this is shown below.

Here we have one processor performing +*/3 and one 2*/3. They are both
used 100% of the time.

Pipelining and interleaving

In many cases we can not divide a
processor in two parts. If we do not
divide the multiplier but still pipe-
line as much as possible, i.e., move
one delay element so that the

critical path is split into one 1 t.u.
section and one 3 t.u. section, we get
the schedule shown below. Here we have, one adder which is utilized to 50%
and two multipliers utilized 75% each.

Conclusions
It is desirable to have equal processor execution times. Pipelining will
improve the processor utilization.

+ *

+ *

+ *

+ * + *

+ *

Schedule using interleaving of resources.

+

T

T

/3 2/3

Pipelined filter with multiplier
split into two parts. The first
part has an execution time of
1/3 while the second has an
execution time of 2/3 of a com-
plete multiplicationpar

+*/3

2*/3 2*/32*/32*/3

+*/3+*/3+*/3

Schedule for filter with multiplier
split into two parts.

+ +++ +
*

*
*

*

Schedule for not fully pipelined filterd.

7.4 We have:

We need 1 adder, 1 multiplier of the
first type, 2 of the second and 3 of the
third type. We introduce delays into
the critical path so that is broken into
smaller pieces. This is often call for
retiming. The degree of utilization of
the adder is 60% and it is 60%, 70%,
and 80% of the multipliers.

Feasible schedule

7.7 a) The iteration bound is determined by

.

b) The minimal number of PEs is .

c)

7.8 a) Specify the ordering of the additions. Chose to add c0 x(n) and b2 y(n–2)
first. We get.

Tmin = max((4+1)/1, (4+1+1)/2) = 5 t.u.

Tmin max
5
1

10
2

15
3

------, ,

5= =

+

T

T

T

+

+
3

7

12

x(n)
y(n)

T

Retimed filter section.

mult 12

mult 7
mult 12

adder

mult 12

mult 7
mult 3

Tmin max
Topi

Ni

max
4 1 1+ +

1

4 1 1+ +
2

---------------------{ , } 5= = =

NPE

Nopi
Topi

i

∑
Tsample

5 4 4 1×+×

8
------------------------------- 3= = =

b)
c)

7.12 a) There are several ways to combine additions and multiplications into
basic operations, but the critical path will contain at least 4 operations.

The number of clock cycles per sample is:

6 PE operations requies => 2 PE

t

x(n)
c0

b1

b2

y(n)

T

T

x(n)
y(n)c

b

b

a

a

a

00

11

22

100 106×
1.25 106×
------------------------- 80=

6 20 1.25 106×××
100 106×

--- 1.5=

A feasible scheduling is shown below.

7.13 Assume that we implement for , otherwise we can implement it with 1 PE.

Let each operation correspond to a vertex and construct the connectivity graph.
Obviously all operations are overlap with each other so that there is no branch between
each two vertices.

From the connectivity graph we have to allocate three PEs.

7.14

Thus, 3 resurcers are required.

7.16 We give only one of the assignment alternatives. The other alternatives are left to the
readers.

b1b2 a 2 a 1

c 0 a 0

0 80

t

T T∞=

Op0

Op2

Op1

Connectivity graph

1 2 3 4

5 6 7

a) The exclusion graph for the 16-point FFT can be constructed as the same way in
7.11.1 for the memory assignment 2.

The four RAMs assignment can be expressed in terms of the binary representation of
index . A variable of index is assigned to RAMP(i) where

b) Using the PE assignment 2 in 7.11.2, we have the following exclusion graph.

0

2

1

3

12

14

13

15

8

10

9

11

4

6

5

7

i i3i2i1i0= i

P i() p1p0
p0 i() i0
p1 i() i2 i1⊕

=
=
=

R
A

M
 0

R
A

M
 1

R
A

M
 2

R
A

M
 3

R
A

M
 2

R
A

M
 3

R
A

M
 0

R
A

M
 1

R
A

M
 0

R
A

M
 1

R
A

M
 2

R
A

M
 3

R
A

M
 2

R
A

M
 3

R
A

M
 0

R
A

M
 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Data index
Data x(i)

A memory assignment for a 16-point FFT.

0

2

1

3

4

6

5

7

A possible assignment, where butterflies in rows , , and

 are executed parallel, is given here. A butterfly operation in row r is
assigned to the PEP(r) where

7.17 a) Number the variables from the top
and downwards. Connect nodes that
must lie in the same memeory cell.
4 memory cells is required.

b) 6 variables yield 12 memory
accesses per sample period. A mem-
ory must have the acess time 12×40
= 480 ns to be able to read and write all variables. This corresponds to a
sample frequency of 1/480 ns = 2.08 MHz.

7.18 We can use the clique partitioning and choose the maximum cliques.

p p N 8⁄+ p N 4⁄+

p 3N 8⁄+

P i() p1p0
p0 i() r1
p1 i() r2

=
=
=

1 2

3

45

6

u1

u2

v6

v5

v1

v2

v3

v4

Memory cells Variables
0 v1
1 v2
2 v3
3 v4
4 v5, u2
5 v6, u3

7.19 a) Assign names to all nods:

b) u1 := a v1(n) Which can be simplified to:
u2 := b v2(n) u4 := x(n) + a v1(n) + b v2(n)
u5 := d x(n) y(n) := d x(n) + c u4

u3 := u1 + u2 v2(n+1) := v1(n)
u4 := x(n) + u3 v1(n+1) := u4

u6 := c u4

y(n) := u5 + u6

v2(n+1) := v1(n)
v1(n+1) := x(n)

c)

T

T

a

b

c

d

x(n) y(n)

v1

3
u

2v

4u

u1

u
2

u
5

u 6

x(n)

y(n)a

b

cv1

2v

d

3u
u2

u6

u1 4u

u5

x(n)

y(n)a

b

cv1

2v

d

3u
u2

u6

u1 4u

u5

7.20 Figure 7.20a shows computation graph N with delay of operations inserted
and T exchanged for —T. The maximal spanning tree is shown in Fig. 7.20b
where edges belonging to the tree are drawn with thick lines and the link
branches with thin lines.

Insert the link branches one by
one and add shimming delays so
that the total delay in the funda-
mental loops that are formed
become zero. Finally, we remove
the negative delays elements and
arrive at the scheduled graph in
Fig. 7.20c. Note that there are no
simming delays in the critical
loops and that the schedule
include

7.21 clock cycles

1

1

1

1

2

2

2

2

2

–4

–4

1

1

1

1

2

2

2

2

2

–4

–4

Fig. 7.20a. The network N. Fig. 7.20b. The maximum spanning tree of N.

1

1

1

1

2

2

2

2

2
0

➃

➂

➃

Fig. 7.20c.Final scheduled computa-
tion graph.

Tmin max
Topi

Ni

max
3 1+

2

3 1 1+ +
3

---------------------,

2= = =

fmax
1

Tmin

fclk

2
-------= =

The critical path is shown below.

Since the critical loop is large than 1 sampling period, we have to schedule the operations
in two sample periods. The scheduling with the maximal sample frequency is shown
below.

7.22 a) The upper bound of required number of memory cells is equal to the num-
ber of variables, i.e., 8.
The lower bound is equal to the total required lifetime divided by the avail-
able time, i.e., .

.
b) Sort the lifetime diagram according to the start time and lifetime and allo-
cate the memories.

33 10⁄ 4=

c) Each variable requires read and write within 2 sampling periods, i.e., total

16 memory accesses are needed. .

7.23 a) clock cycles

b) The precedence graph is shown below:

c) Since the critical loop requires 8 clock cycles which is larger than the sampling period,
we have to schedule the computation in two sampling periods. The minimal number of

 PEs is .

Taccess
2

15 106 16××
--------------------------------- 8.3 ns= =

Tmin max
Topi

Ni

max
3 1+

1

7 1+
2

------------{ , } 4= = =

NPE

NiTopi

i

∑
2Tsample

3 3× 2 7× 4 1×+ +() 2×
2 5×--- 5,4 6= = = =

d)

