9.11 The total number of operations, $N_{o p}$, is

$$
N_{o p}=\frac{N}{2} \log _{2}(N)=\frac{1024}{2} \log _{2}(1024)=5120
$$

These are performed in $T_{F F T}=1 \mathrm{~ms}$ which means that the number of operations per second is:

$$
\frac{N_{o p}}{T_{F F T}}=\frac{5120}{10^{-3}}=5.12 \mathrm{MOp} / \mathrm{s}
$$

The clock frequency on the bit-serial lines through A-A' is

$$
f_{C L}=\frac{N_{o p}}{T_{F F T}} W_{d}=5.1210^{6} \cdot 21 \approx 108 \mathrm{MHz}
$$

The total bit rate through A-A' is $(4+4) 10710^{6}=860 \mathrm{Mbit} / \mathrm{s}$
The bit rate through B-B' $\frac{W_{m}}{T_{m}}=f_{m} W_{m}=21 f_{m}$
The bit rates through the cuts must be equal

$$
86010^{6}=21 f_{m} \Rightarrow f_{m}=\frac{86010^{6}}{21}=41 \mathrm{MHz}
$$

The memory clock rate will be halved if the word length is doubled. A single fast RAM (41 MHz) is enough to support the butterfly PE.

