9.12 First we estimate the computational workload. The total workload is

$$
N_{o p}=352.8+352.8+352.8+705.6=1.764 \mathrm{MOp} / \mathrm{s}
$$

The clock rate in cut A-A' is $f_{C L}=N_{o p} W_{d}=1.764 \cdot 20 \approx 35.3 \mathrm{MHz}$
The bit rate in A-A' is $(2+2) f_{C L}=4 \cdot 35.3=141.2 \mathrm{Mbit} / \mathrm{s}$
The bit rate in $\mathrm{B}-\mathrm{B}$ ' is $f_{\text {mem }} W_{\text {mem }}$

Stage	1	2	3	4
Order	17	9	5	5
no. adaptors	8	4	2	2
frequency	44.1	88.2	176.4	352.8
kOPS	352.8	352.8	352.8	705.6

If we choose $W_{\text {mem }}=20$ bit we will have $f_{\text {mem }}=\frac{141.2}{20} \approx 7.1 \mathrm{MHz}$
To get $f_{\text {mem }}<20 \mathrm{MHz}$ we must select $W_{\text {mem }}>\frac{141.2}{20} \approx 7.1$ bit

