9.13 a) The number of 1-D DCT that have to be computed per second is

$$
N_{t o t}=(16+16+2) \cdot 240000
$$

That is: $16+161-\mathrm{D}$ DCT. We looses two cycles between the row and column computations because of the pipelining of the processors. The execution time for one processor is
$\frac{14}{12010^{6}}$ at maximal clock frequency, i.e., we can compute
$\frac{12010^{6}}{14}=8.5710^{6} 1-\mathrm{D} D \mathrm{DCT} / \mathrm{s}$. The required number of processors is

$$
N_{p}=\frac{34 \cdot 240000 \cdot 14}{12010^{6}} \approx 0.952<1
$$

Thus, one processor is enough. The processor schedule becomes sequential, i.e., any feasible schedule is acceptable.
b)

c) The number of bits per second passing to and back from the processor is: $34 \cdot 240000 \cdot 14=114.24 \mathrm{Mbit} / \mathrm{s}$. The processor must operate at 114 MHz .
d) Through the cut A-A': $(16+16) 34 \cdot 240000 \cdot 14=3.66 \mathrm{Gbit} / \mathrm{s}$. Through B-B'

$$
\frac{N_{m} \cdot W_{m}}{T_{R A M}}=\frac{N_{m} \cdot W_{m}}{1710^{-9}} \Rightarrow N_{m}=\frac{3.6610^{9} \cdot 1710^{-9}}{W_{m}}
$$

We select $W_{m}=12 \Rightarrow N_{m} \approx 5.18$
e) The memory must hold a whole $16 \times 16$ data matrix, i.e., $16 \cdot 16 \cdot 12=3072$ bits.
f) We select 8 RAMs each with $32 \times 12$-bit words. This selection yields a simple organization of the memories.
g) We have already selected $W_{m}=12$. The required access frequency for the memories is $3.6556810^{9}=8 \cdot 12 \cdot f_{m}$
$\Rightarrow f_{m}=38 \mathrm{MHz}$

