9.14 a) The FFT has $N_{\text {tot }}$ butterflies

$$
N_{t o t}=\frac{N}{2} \log _{2}(N)=\frac{1024}{2} \log _{2}(1024)=5120 \text { butterflies }
$$

The number of processor is $N_{p}=\frac{5120 \cdot 1000 \cdot 23}{12010^{6}} \approx 0.981<1$
The processor schedule is sequential since only one processor is used.
b) See Problem 9.13.
c) In average we execute $\frac{5120}{10^{-3}}$ butterflies per second. The bit rate to the processor is: $\frac{5120}{10^{-3}} \cdot 23 \approx 118 \mathrm{MHz}$
d) The number of bits per second through the cut A-A'

$$
(4+4) \frac{5120}{10^{-3}} \cdot 23=942.08 \mathrm{Mbit} / \mathrm{s}
$$

and through the cut $\mathrm{B}-\mathrm{B}^{\prime}$

$$
\frac{N_{m} \cdot W_{m}}{T_{R A M}}=\frac{N_{m} \cdot W_{m}}{1710^{-9}} \Rightarrow N_{m}=\frac{942.0810^{6} \cdot 1710^{-9}}{W_{m}}
$$

We select $W_{m}=21 \Rightarrow N_{m} \approx 0.76<1$
e) We need $2 \cdot 1024$ 21-bit words $\Rightarrow 43008$ bits.
f) We select 8 RAMs each with 128×42-bit words. This selection yield a reasonable length/width ratio for the memories.
g) The memory access rate is $942.0810^{6}=8 \cdot 42 \cdot f_{m} \Rightarrow$ $\Rightarrow f_{m}=2.80 \mathrm{MHz}$

