9.8 a) The only values that need to be computed explicitly are the values to be stored in the delay elements and the outputs. Eliminating all intermediate node values in the recurrence equations, which were derived in Problem 6.7, we get the difference equations in computable order.

```
\(v_{2}(n+1):=v_{1}(n)\)
\(v_{1}(n+1):=\left(\alpha_{1}-1\right) x(n)-\alpha_{1} v_{2}(n)\)
\(v_{4}(n+1):=v_{3}(n)\)
\(v_{3}(n+1):=\left(\alpha_{3}+1\right) v_{0}(n)-\alpha_{3} v_{4}(n)\)
\(v_{6}(n+1):=v_{5}(n)\)
\(v_{5}(n+1):=\alpha_{1}\left(1+\alpha_{5}\right) x(n)+\left[\alpha_{5}-\alpha_{1}\left(1+\alpha_{5}\right)\right] v_{2}(n)-\alpha_{5} v_{6}(n)\)
\(v_{0}(n+1):=x(n)\)
\(y_{1}(n):=\alpha_{1} \alpha_{5} x(n)+\alpha_{3} v_{0}(n)-\alpha_{5}\left(1-\alpha_{1}\right) v_{2}(n)+\left(1-\alpha_{3}\right) v_{4}(n)+\left(1+\alpha_{5}\right) v_{6}(n)\)
\(y_{2}(n):=\alpha_{1} \alpha_{5} x(n)-\alpha_{3} v_{0}(n)-\alpha_{5}\left(1-\alpha_{1}\right) v_{2}(n)-\left(1-\alpha_{3}\right) v_{4}(n)+\left(1+\alpha_{5}\right) v_{6}(n)\)
```

b) Inserting the quantized adaptor coefficient values we get

$$
\begin{aligned}
v_{1}(n+1):= & {\left[1123 x(n)+99 v_{2}(n)\right] 2^{-10} } \\
v_{3}(n+1): & {\left[1405 v_{0}(n)+381 v_{4}(n)\right] 2^{-10} } \\
v_{5}(n+1): & {\left[-53361 x(n)+1598577 v_{2}(n)+1545216 v_{6}(n)\right] 2^{-21} } \\
v_{0}(n+1):= & \mathrm{x}(n) \\
y_{1}(n):= & {\left[149391 x(n)+780288 v_{0}(n)+1694607 v_{2}(n)+2877440 v_{4}(n)+\right.} \\
& \left.+551936 v_{6}(n)\right] 2^{-21}
\end{aligned} \quad \begin{aligned}
& \\
& y_{2}(n):= {\left[149391 x(n)-780288 v_{0}(n)+1694607 v_{2}(n)-2877440 v_{4}(n)+\right.} \\
&\left.+551936 v_{6}(n)\right] 2^{-21}
\end{aligned}
$$

In practice, this new set of equations should be scaled in order to optimize the dynamic range. The scaled coefficients tend to be of the same magnitude. The word length of these new coefficients is rather long, since they have not been optimized for this application. Instead, the adaptor coefficients have been optimized to have a favorable representation with few nonzero digits.

Five vector-multipliers are needed for the fully parallel implementation showed in Fig. P9.8.

Fig. P9.8. Vector-multiplier based realization of lattice wave digital filter.

