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Outline

* Moore’s law
* Dennard scaling
e CMOS scaling beyond 130 nm

* Moore’s law and radio circuit design
* The 28 nm CMOS Power Amplifier (PA)
 PA design in scaled CMOS for wireless applications

 FIinFET and radio design
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Moore’s law is not
about scaling but econo
my!
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Number of transistorer per chip

Chip Complexity
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Dennard scaling of MOS devices

Component dimension/thickness
Doping concentration

Gate oxide thickness

Supply voltage

Current

Capacitance

Delay time (1/speed)

Transistor power

Energy efficiency ("MIPS/W”)

Power density

1/\

1/\
1/A
1/A
1/A

1/\ Robert Dennard
1/\?

1/A3

1 * constant electrical field
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Dennard & Moore 1975-2000: The winning team!

Dennard scaling when transistors getting smaller:

* faster components and circuits,
* lower total power (constant power density),

 electronics can be made smaller, lighter, faster, better.

Moore’s law:

* same cost per area when components scale,
* more transistors per chip,

* lower cost per transistor.
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Problem with Dennard scaling

Supply voltage was not properly scaled, more like 1/sqrt(\).

Supply voltage reduction in practice stopped more than ten years ago.
* Thermal noise (kT/q =25 mV at room temperature),

e Sub-threshold leakage (power consumption, thermal issues).
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Problem with Dennard scaling

 Power consumption limits the scaling

* Increased clock speed leads to higher power consumption
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CMOS scaling down to 130 nm
was rather ”linear”

Metal Gate
Electrode

Sidewall Sidewall

90 nm: mechanical strain in the
channel => higher mobility

90 nm: PD-SOI (reduced
switching time, corresponding
to one process node, but more

higher substrate cost).

— Insulator | High-k Dielectric | Insulator
Silicide

45 nm: Material with higher
dielectric constants replacing
SiO7 as insulator in the gate
(reduced leakage currents)

nt*-Si /p*-Si P-SN\ **-Sj Silicide
Source Channel Drain
l'l+-Si / / . \ \ n+_Si

Extension Halo Tensile Stress Halo Extension

p-Si Substrate

28 nm: Metal gate (smaller
threshold voltage variations)

32/28 nm bulk MOSFET

28 nm: FD-SOI
Thin undoped channel with
device properties given by
vertical dimensions and
backside bias.
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22 nm: Tri-Gate or FINFET

FINFET ADVANTAGES
oV o 0V PARAMETER DETAILS

? G Power Much lower power consumption allows high

ov G v ov v integration levels. Early adopters reported 150%
? ? ? ? improvements.

S D s ov D Operating voltage FinFETs operate at a lower voltage as a result of

their lower threshold voltage.
0V< V<1V Feature sizes Possible to pass through the 20nm barrier
oV G previously thought as an end point.
Py Static leakage current | Typically reduced by up to 90%
ov Operating speed Often in excess of 30% faster than the non-

FinFET versions.

Gate

Insulator

(a) High Speed (HP/SP) and I (b) High Voltage (TG) |
Low Power Logic (LP/ULP)

Source

Intel 22 nm with extensions for SoC
design (Jan et al., [IEDM 2012)

II. LNKOPING First description? Hisamoto et al., TED 1991
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2017: State-of-the-artis 10 nm

e Early 2015: Intel says 10 nm delayed until 2017 (ITRS=2015)

* April 2015: TSMC announced that 10 nm production would
begin at the end of 2016.

 May 2015: Samsung Electronics showed off a 300 mm wafer
of 10 nm FinFET chips.

e August 2016: Intel began trial production at 10 nm.

 October 2016: Samsung Electronics announced mass
production at 10 nm.

* April 2017: Samsung started shipping their Galaxy S8 which
uses Samsung's version of a 10 nm processor.

II “LINKOPING o
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Moore’s law in several dimensions

More than Moore: Diversification

o . o
CBaseline CMOS: CPU, Memory, Logic (nm) >

12
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Moore’s law and radio circuit design

* Nodes for many new radio circuit designs today is 28 nm on
bulk substrate or FD-SOI. 40 and 55 nm also popular.

* Nodes give more than fast enough transistors for all
wireless communication in the 1-6 GHz bands (mobile
comm, wireless networks, sensors, etc.), but also for short
range communication (e.g. 5G, 28 - 60 - 100+ GHz).

 Demands for high level of integration (of digital blocks)
make the selected processes less suitable for radio design -
too small nodes - but we still have to live with this problem!

LINKOPING
II.“ UNIVERSITY



The power amplifier (PA)

e Last active part in the transmitter before the antenna.
Boosts the signal to higher power levels for transmitting
the signal to a distant receiver.

* Power levels:
* Cellular phones: 23-24 Bm (Pav), up to 30 dBm (Ppeak),
 WLAN: up to 20-23 dBm (Pav), up to 30 dBm (Ppeak),
* Bluetooth: typically around 5 dBm.

* Frequency range often in the 1-6 GHz interval for CMOS
integrated PAs

14
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The power amplifier (PA)

Requirements for portable applications (consumer-oriented):
* high integration => low price,
* battery operation => high efficiency needed,

* high linearity => high data rate.

15
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How to reach high PA output power

« Large devices (many parallel transistors) +
impedance transformation. Power combination
using (on-chip) transformers.

. V2
» High supply voltage F=z
« "Digital” PAs (class-D inverter-based, using
normal supply voltage)

16
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How to handle the high supply voltage?

New component/new structures

silicide block +
n+ implant block

= /
[ [ dnain

p-well n-well

p-substrate

LDMOS structure with no additional process steps or masks*

Designed in Global Foundry’s 65 nm CMOS-process for WLAN applications.
Concept scalable to (available in) 45 nm and 32/28 nm.

Ilo H“K/%%lgﬁv T. Johansson et al., EuMIC 2013



T. Johansson et al., EuMIC 2013

WLAN PA

 Transistors with W=5.6 mm mounted on PCB

Differential PA, Vdd=3 V, f=2412 MHz
P-1dB = 32,5 dBm (1,8 W).

Class AB, efficiency over 50 % for unmodulated signal.

EDMOS f=2412 MHz
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The linear PA

_ Voo
« Linear PAs (class A, AB, ...)
are the most commonly used Lee cno
amplifier classes on radio PA Cbc block
design. Vps
Ip
« Drawback: 2 x supply over the Pin Pout
drain node of the transistor. @ RCE vour, iour
Vi \Y%
Vaal __£_ ) Yo Vg b--L -2 o
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How to handle the high voltage?

Most common circuit solution: Voo
the cascode Lg
(stacked devices) C
m
VDD
CLARGE == 'P "2 R
The voltage is however not C. = =
evenly distributed between Vin ¥ '
the transistors => not optimal °_|I l|: M
(improved variants exist) Rq
Ls
b
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Transistor stacking: extending the concept

—() out |Last=4Ropt

84 4V
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IN O—| In practice limited to four stacked devices
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Limitation for maximum supply voltage

* Conventional bulk CMOS: many diode breakdowns to wells and
substrate.

* Scaled bulk CMOS: breakdown voltages down to 4-5 V.

» Stacked bulk components (PA): will be limited by the drain-
substrate breakdown of the uppermost transistor in the stack.

 With SOI, there is no breakdown to the substrate. Possible to stack
components without breakdown voltage limitations.

II LINKOPING
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28 nm FD-SOI (UTBB)

High-K
Metal Gate

Lg=24 nm, Tox=1.8 nm, Vsup=1.0 V
ultra-thin silicon: 7 nm

ultra-thin buried oxide: 25 nm
e —— (7nm)
Thin BOX (25nm)

36 Masks:
7ML
Dual Vt - Dual Oxide

Substrate High-k dielectric
Metal-gate electrode
S/D: epitaxy raised
Undoped channel
Bulk/SOl integration

Stacked PA design:
Le=150 nm, Tox=2.8 nm,
Vsup=1.8 V (+10 %)

LINKOPING . )
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3-stacked high-power PA in 28 nm FD-SOI
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W= 6000 um (10 um * 10 * 60 cells)
Vdd=3.0 V

Class-AB

f=1900 MHz

Zin=049+*7.10Q

RL=7 Ohm

C2=4 pF, C3=1pF

P-1dB= 28.9 dBm
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3-stacked high-power PA in 28 nm FD-SOI

e Joint project Ericsson + Acreo Swedish ICT + LiU
* Areal5x2.2mm
* Cost 50 kS

e Under evaluation

i1
4
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"Digital PA”

e CMOS-inverters can be used as switched PA, class D.

IH

* They operate at normal (“digital”) supply voltage and has
no over-voltage compared to other classes of PAs.

* In this particular case, the inverters 2V
are using a variant of cascode, so
that the output stage can use
2 X Vpp, resulting in higher C Va

output power. G
co=_ Vi
c |
0 : :
PA driver cascodeinverter

II U hKRNe Xu et al., JSSC, 2011
([ ) UNIVERSITY



27

“Digital PA” + transformer power combination

* The PAs are divided into 4 x differential PAs and power
combined using an on-chip transformer.

N et e e - =

PINT P d4d ddl d4hd ddd d £d —
PA. . v N A 4000900608300 0%0
-

i : 10 s (t)
-T 4

PA>— _
s1 (t) o}

PAH-

PA - A

' o sy (t)
~—<PAI-

s2 (t) ofe

4x1.5mm, 130 nm CMOS

Il.l.l LNKOPING Fritzin et al., ESSCIRC 2011



Hot topic!

ISSCC 2017 / SESSION 13 / HIGH-PERFORMANCE

Lo

13.9 A1.1V 28.6dBm Fully Integrated Digital Power
Amplifier for Mobile and Wireless Applications in
28nm CMOS Technology with 35% PAE

Antonio Passamani’, Davide Ponton', Edwin Thaller’,
Gerhard Knoblinger', Andrea Neviani?, Andrea Bevilacqua?

'Intel, Villach, Austria
University of Padova, Padova, Italy

[ 1
Thermometric Hybrid I/Q Decoder Thermometric Hybrid I/Q Decoder
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End
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This Work

Technology [nm] 28
Supply voltage [V] 1.1
Resolution [bit] 11
Carrier Freq. [GHz] 2.5
Psat [dBm)] 28.6
PAE @ Psat [%] 35
Modulation signal LTE 5-10MHz /

WIFI 20-40MHz
Pavg [dBm] 20.7 /17.3
EVM [%] 3.2-3.8/4.3-5.4
PAE @ Payg [%] 14.6 /11
ACLR [dBc] -34.6/-44.7
w/ DPD No
Area [mm?] 1
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FINFET and radio

 No recent examples in the literature of
radio circuit demonstration using FinFETs
(some at 45 nm node for pure research).

e Device simulation papers.

* Parasitic capacitances important!

* “similar characteristics in terms of
transconductance, Early voltage, voltage gain,
self-heating issue but UTBB outperforms FinFET in
terms of cutoff frequencies thanks to their

relatively lower fringing parasitic capacitances.”
(Raskin, "FinFET versus UTBB SOI - a RF perspective”,
ESSDERC 2015)
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II.“ UNIVERSITY



30

Summary

* Moore and Dennard: continued transistor scaling,
currently at 10 nm for large processors

* FinFET for RFIC design: lot of parasitics make radio design
unfavorable.

* Integrated radio design: 28 nm CMOS (bulk or FD-SOI) is
”state-of-the-art”.

* Alot of tricks needed to reach high output power (>= 30
dBm or 1W), but possible and with good enough
performance for popular applications.
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Thank you for your attention!
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