
The Mystery Delta Cycle

Petter Källström
Many students have heard about the so called delta cycle in VHDL simulations, but have no really clue of what it is. Here is
an informal and example based explanation.

A delta cycle is the 0 ns delay that differs an assignment (e.g. a<=b) of a signal (a), from the assignment of the signal it
depends on (b) in a simulation. The delta cycle is only a simulation term. It does not apply to hardware realization.

A short example. Consider the concurrent VHDL statements:

x <= '0', '1' after 10 ns;
y <= not x;

Here, x will get the value '0', and then '1' after 10 ns. y will be '1' and then change to '0' one delta cycle after x changes to '1'.
Since a delta cycle is 0 ns long, they appear to change in the same time in a simulation waveform. With a third statement;

z <= x and y;
z will get the value '1' one delta cycle after x gets '1' (in the same time as y gets '0'), and then back to '0', one delta cycle
later. In the waveform this is shown as just a vertical spike at the time 10 ns.

Some simulation rules:

• A process is executed sequentially. It has its own "program pointer" (pointing
out the current executing statement).

• A process with sensitivity list, i.e. process(<sensitivity list>), is executed once
every time there is a change in the sensitivity list (including once at time 0 ns).
Such a process must not have any wait statements.

• A process without sensitivity list is executed at time 0 ns. The process starts over again as soon as it comes to "end
process;", and can run any number of times – i.e. it can hang the simulation in an infinity loop. Such a process
should have at least one wait statement (or it will never end).

• A concurrent statement is executed every time there is a change on any signal that the statement depends on.

• The simulator runs the following simulation cycle over and over again:

1. Find next time point with an action (initially: time 0 ns).

2. Update all signals that should be updated (initially: initial value). These signals gets the boolean attribute
'event = true. All other signals gets the attribute 'event = false. Initially, all values get 'event=false.

3. Execute all processes and concurrent statements that depends on the signals (initially: execute all).

▪ Each signal assignment is noted into an assignment table. The signals are not immediately updated.

▪ The assignment table contains information about signals, values, and update.

4. As soon as all concurrent statements and processes are done (processes with sensitivity list) or reached a
wait statement (processes without sensitivity list only), the simulation cycle ends.

▪ If any signal was assigned without the "after <time>", the next time point with an action is "now".
I.e., the simulation time is not updated in the next cycle. This is a delta cycle.

▪ There might not be any processes or concurrent statements to execute, since no one depends on the
updated signal. Then the simulation cycle immediately ends. The next simulation cycle will then
have a new simulation time.

• A process (without sensitivity list) may wait for some time to elapse (e.g. using "wait for 10 ns;"). Then the
continuation of this process is considered as an action in step 1. above. The process is of course executed in step 3.

• A process (without sensitivity list) may wait for a condition of a signal (e.g. "wait until rstn = '1';"). The wait
condition is evaluated in the beginning of step 3 above (if a signal in the condition has changed). As a result, there
must be a wait of at least one delta cycle. That is, "wait until clk='1';" is equivalent to "wait until rising_edge(clk);"

The delay between two signals, during a delta cycle, is sometimes called a delta delay.

process(clk) begin
 -- with sensitivity list
 -- execute on clk event
end process;
process begin
 -- no sensitivity list
end process;

A bigger example.

Assume the VHDL code below (clk is initialized to '1'. rising_edge(x) is equivalent to x'event AND x='1'):

rstn <= '0', '1' after 30 ns; -- (c1)
clk <= not clk after 10 ns; -- (c2)
z <= x xor y; -- (c3)
f <= z after 15 ns; -- (c4)
c2 <= clk; -- (c5)
p1 : process(clk, rstn) begin

if rstn = '0' then
x <= '0'; y <= '0';

elsif rising_edge(clk) then
y <= x;
x <= not y;
cb <= clk;
c2b <= c2;

end if;
end process;
p2 : process begin

wait until y = '0'; -- (w1)
g <= '0';
wait until x = '1'; -- (w2)
g <= '1';

end process;

Initial cycle: Initially, the time is 0 ns, all signals are given the default values:

Execute all concurrent statements and processes (all 'event attributes are set to false):

After execution, the assignment table is given to the right. The initial cycle is done.

Cycle 1: Next action time is still time 0 ns (but delta 1). The bolded values are updated (and their 'event = true):

No change is made to z, so it's 'event is kept false.

Cycle 2: Still time 0 ns. Note how it is the updated signals that triggers the next execution.

Cycle 3:

Cycle 4: Nothing more to do at 0 ns. Jump to a new time.

time delta rstn clk z x y f g c2 cb c2b p2 pointer

0 ns +0 U 1 U U U U U U U U (start of p2)

To execute: c1 c2 c3 c4 c5 p1 p2

signal time value

rstn 0 ns 0

z 0 ns U

c2 0 ns 1

clk 10 ns 0

f 15 ns U

rstn 30 ns 1

time delta rstn clk z x y f g c2 cb c2b p2 pointer

0 ns +1 0 1 U U U U U 1 U U w1

To execute: p1

Why? rstn'event

signal time value

x 0 ns 0

y 0 ns 0

clk 10 ns 0

f 15 ns U

rstn 30 ns 1

time delta z x y f g c2 c2b p2 pointer

0 ns +2 0 1 U 0 0 U U 1 U U w1

rstn clk cb

To execute: c3 p2

Why? x'event, y'event y'event, y=0

signal time value

z 0

g 0

0

f U

1

0 ns

0 ns

clk 10 ns

15 ns

rstn 30 ns

time delta z x y f g c2 c2b p2 pointer

0 ns +3 0 1 0 0 0 U 0 1 U U w2

rstn clk cb

To execute: c4

Why? z'event

signal time value

clk 10 ns 0

f 15 ns 0

rstn 30 ns 1

time delta z x y f g c2 c2b p2 pointer

10 ns +0 0 0 0 0 0 U 0 1 U U w2

rstn clk cb

To execute: c2 c5 p1

Why? clk'event clk'event clk'event

signal time value

c2 10ns 0

x 10ns 0

y 10ns 0

f 15 ns 0

20ns 1

30 ns 1

clk

rstn

Cycle 5: Here, x and y should be assigned 0, but they are already 0, so nothing happens.

 Nothing to execute this time (c2 does not trigger anything)....

Cycle 6:

...nor this time (nothing depends on f).

Cycle 7:

Cycle 8:

Cycle 9: Time to release the reset.

Cycle 10:

Cycle 11: First rising_edge(clk) after released reset.

Cycle 12:

Cycle 13:

And so on

In the ModelSim waveform, you can see the delta delays, if you select:

• Wave -> Expanded Time -> Deltas Mode

• Wave -> Expanded Time -> Expand All

In (assertion) reports, in the transcript window, the time and iteration identifies in which cycle the report where performed.

time delta z x y f g c2 c2b p2 pointer

10 ns +1 0 0 0 0 0 U 0 0 U U w2

rstn clk cb

To execute:

Why?

signal time value

f 15 ns 0

clk 20ns 1

rstn 30 ns 1

time delta z x y f g c2 c2b p2 pointer

15 ns +0 0 0 0 0 0 0 0 0 U U w2

rstn clk cb

To execute:

Why?

signal time value

clk 20 ns 1

rstn 30 ns 1

time delta z x y f g c2 c2b p2 pointer

20 ns +0 0 1 0 0 0 0 0 0 U U w2

rstn clk cb

To execute: c2 c5 p1

Why? clk'event clk'event clk'event

signal time value

c2 20ns 1

x 20ns 0

y 20ns 0

30ns 0

30 ns 1

clk

rstn

time delta z x y f g c2 c2b p2 pointer

20 ns +1 0 1 0 0 0 0 0 1 U U w2

rstn clk cb

To execute:

Why?

signal time value

clk 30ns 0

rstn 30 ns 1

time delta z x y f g c2 c2b p2 pointer

30 ns +0 1 0 0 0 0 0 0 1 U U w2

rstn clk cb

To execute: c2 c5 p1

Why? clk'event clk'event clk'event, rstn'event

signal time value

c2 30ns 0

clk 40ns 1

time delta z x y f g c2 c2b p2 pointer

30 ns +1 1 0 0 0 0 0 0 0 U U w2

rstn clk cb

To execute:

Why?

signal time value

clk 40ns 1

time delta z x y f g c2 c2b p2 pointer

40 ns +0 1 1 0 0 0 0 0 0 U U w2

rstn clk cb

To execute: c2 c5 p1

Why? clk'event clk'event clk'event

signal time value

c2 40ns 1

y 40ns 0

x 40ns 1

40ns 1

c2b 40ns 0

50ns 0

cb

clk

time delta z x y f g c2 c2b p2 pointer

40 ns +1 1 1 0 1 0 0 0 1 1 0 w2

rstn clk cb

To execute: c3 p2

Why? x'event x'event, x=1

signal time value

z 40ns 1

g 40ns 1

clk 50ns 0

time delta z x y f g c2 c2b p2 pointer

40 ns +2 1 1 1 1 0 0 1 1 1 0 w1

rstn clk cb

To execute: c4

Why? z'event

signal time value

clk 50ns 0

f 55ns 1

Why is the delta delay a problem?

The answer is: Since it produces behaviours that depends on things they should not depend on.

An example.

In the RTL code:

process(fast_clk) begin
if rising_edge(fast_clk) then

slow_clk <= not slow_clk;
end if;

end process;
process(slow_clk) begin

if rising_edge(slow_clk) then
out_data <= "yada yada";

end if;
end process;
out_clk <= slow_clk;

In the test bench:

process(out_clk) begin
if rising_edge(out_clk) then

-- clock in the result.
res <= out_data;

end if;
end process;
assert res = "yada yada"
 report "No no!" severity note;

Here. Assume fast_clk is updated at delta cycle +0. Then

• slow_clk is updated at delta cycle +1.

• out_data is updated at delta cycle +2.

• out_clk is updated at delta cycle +2.

• res is updated at delta cycle +3 (and gets the new out_data value, not the old as one can think).

• The assert will be performed on delta cycle +4.

Probably this was not what the programmer wanted. The problem here comes from the statement “out_clk <= slow_clk”.
Since it's not allowed to read from an output port signal, the problem will easily occur when generating clocks inside a
module.

