Estimation and Maintenance of Measurement Rates for Multiple Extended Target Tracking

Karl Granström
Division of Automatic Control
Department of Electrical Engineering
Linköping University, SE-581 83, Linköping, Sweden
Email: karl@isy.liu.se

Umut Orguner
Department of Electrical and Electronics Engineering
Middle East Technical University
06531, Ankara, Turkey
Email: umut@eee.metu.edu.tr

Abstract—In Gilholm et al.’s extended target model, the number of measurements generated by a target is Poisson distributed with measurement rate \(\gamma \). Practical use of this extended target model in multiple extended target tracking algorithms requires a good estimate of \(\gamma \). In this paper, we first give a Bayesian recursion for estimating \(\gamma \) using the well-known conjugate prior Gamma-distribution. In multiple extended target tracking, consideration of different measurement set associations to a single target makes Gamma-mixtures arise naturally. This causes a need for mixture reduction, and we consider the reduction of Gamma-mixtures by means of merging. Analytical minimization of the Kullback-Leibler divergence is used to compute the single Gamma distribution that best approximates a weighted sum of Gamma distributions. Results from simulations show the merits of the presented multiple target measurement-rate estimator.

Index Terms—Poisson distribution, Poisson rate, Gamma distribution, conjugate prior, Bayesian estimator, extended target, PHD filter, mixture reduction, Kullback-Leibler divergence.

I. INTRODUCTION

In target tracking, the assumption is often made that a target gives rise to at most one measurement per time step, see e.g. [1]. However, in extended target tracking this assumption is relaxed, and the extended targets are modeled as potentially giving rise to more than one measurement per time step. In an extended target tracking scenario it is therefore of interest to model the number of measurements that each target gives rise to.

One such model is given by Gilholm et al. [2], where the measurements are modeled as an inhomogeneous Poisson point process. At each time step, a Poisson distributed random number of measurements are generated, distributed around the target. Mahler has given an extended target Probability Hypothesis Density (PHD) filter under this model [3], and a Gaussian Mixture implementation of this filter, called the Extended Target Gaussian Mixture PHD (ET-GM-PHD) filter, has been presented [4], [5]. A Gaussian inverse Wishart implementation of [3], called the Gaussian inverse Wishart PHD (GIW-PHD) filter is presented in [6]. The measurement model [2] can be understood to imply that the extended target is sufficiently far away from the sensor for the measurements to resemble a cluster of points, rather than a geometrically structured ensemble, see e.g. [4], [5] for simulation examples. However, the ET-GM-PHD filter and GIW-PHD filter have also been applied successfully to data from laser range sensors, which give (highly) structured measurements, see [5]–[7].

In the extended target PHD filter the Poisson rate \(\gamma \) is modeled as a function of the extended target state \(x \), i.e. \(\gamma \approx \gamma(x) \). In the ET-GM-PHD filter \(\gamma \) is approximated as a function of the extended targets’ state estimates [5]. It has been noted that having a good estimate \(\hat{\gamma} \) of the true parameter is important when multiple targets are spatially close [5]. More specifically, under the assumption that the true rate is constant and equal for all targets, the true parameter must lie in the interval

\[
\hat{\gamma} - \sqrt{\gamma} \leq \gamma \leq \hat{\gamma} + \sqrt{\gamma}
\]

for the estimated cardinality to be correct [5]. However, in the most general case the rates are neither constant over time, nor equal for all extended targets. It might also be the case that the true function \(\gamma(\cdot) \) is difficult to model, or even time-varying. All of these issues raise the need for a method to estimate individual Poisson rates for multiple extended targets.

In this paper we consider multiple extended targets under the measurement model [2]. The set of extended targets at time \(t \) is denoted

\[
X_k = \left\{ x_k^{(i)} \right\}_{i=1}^{N_{x,k}}.
\]

At each time step, the number of measurements generated by the \(i \)-th target is a Poisson distributed random variable with rate \(\gamma_k^{(i)} \). The measurement set at time \(t \), denoted

\[
Z_k = \left\{ z_k^{(j)} \right\}_{j=1}^{N_{z,k}},
\]

is the union of all target measurements and the clutter measurements. The number of clutter measurements generated at each time step is assumed to be Poisson distributed with rate \(\lambda_k \). Let \(Z_k \) denote all measurement sets up to, and including, \(t_k \). We assume the existence of an underlying multiple extended target tracker that estimates the target states \(x_k^{(i)} \), e.g. [4], [5]. The set of measurements that are used to update the state of the \(i \)-th target at time \(t_k \) is denoted \(Z_k^{(i)} \).
The first objective of this work is to estimate the set of measurement rates $\gamma_k^{(i)}$, given sequences of measurement sets
\[
\mathbf{Z}_k^{(i)} \triangleq \{ \mathbf{Z}_0^{(i)}, \ldots, \mathbf{Z}_k^{(i)} \}, \quad i = 1, \ldots, n_{x,k}.
\] (4)

To this end, in Section II we give a recursive Bayesian estimator for $\gamma_k^{(i)}$, with exponential forgetting for the prediction step. We also show how the predicted likelihood is affected when the measurement rates $\gamma_k^{(i)}$ are estimated in addition to estimating the target states $x_k^{(i)}$.

In the multiple target case under clutter and missed detections, there might be multiple alternative measurement sets (corresponding to different association hypotheses)
\[
\mathbf{Z}_k^{(i_1)}, \mathbf{Z}_k^{(i_2)}, \ldots, \mathbf{Z}_k^{(i_{N^k})}
\] that are used to update the ith target state at time t_k. In this case, the state densities of the targets are represented by mixture densities. As time progresses, the number of mixture components grow. To obtain computationally tractable algorithms, hypothesis reduction must be performed, e.g. via pruning or merging.

The second objective of this work is to show how a mixture of γ estimates can be reduced. In Section III, we consider merging a weighted sum of measurement rate estimates by minimization of the Kullback-Leibler divergence, and we also give a criterion that is used to determine whether or not two components should be merged.

The proposed Bayesian estimator and merging method is evaluated in Simulations in Section IV, and the paper is finalized with concluding remarks in Section V.

II. BAYESIAN RECURSION FOR γ_k

In this section, we consider recursive estimation of the ith target’s measurement rate $\gamma_k^{(i)}$ from the sequence of measurement sets $\mathbf{Z}_k^{(i)}$. We also show how estimating the measurement rate affects the resulting extended target predicted likelihood. Since we consider only the ith target, from this point on in this section, we suppress the superscript (i).

A. Measurement update and prediction

The conjugate prior to the Poisson distribution is well known to be the Gamma distribution, see e.g. [8]. Assume that at time t_k the prior distribution for the Poisson rate γ_k is a Gamma distribution,
\[
p(\gamma_k|\mathbf{Z}^{k-1}) = \text{GAM}(\gamma_k; \alpha_k|k-1, \beta_k|k-1)
\] (6)
\[
= \frac{\beta_k^{\alpha_k|k-1}}{\Gamma(\alpha_k|k-1)} \gamma_k^{\alpha_k|k-1-1} e^{-\beta_k|k-1 \gamma_k}.
\] (7)

Let the k:th measurement set \mathbf{Z}_k contains $N_{x,k}$ elements, where $N_{x,k}$ is Poisson distributed with rate γ_k,
\[
p(N_{x,k} | \gamma_k) = \text{PS}(N_{x,k} ; \gamma_k)
\] (8)
\[
= \frac{\gamma_k^{N_{x,k}} e^{-\gamma_k}}{N_{x,k}!}.
\] (9)

The posterior distribution is
\[
p(\gamma_k | \mathbf{Z}^k) = \text{GAM}(\gamma_k; \alpha_k|k-1, \beta_k|k-1) \text{PS}(N_{x,k} ; \gamma_k)
\]
\[
= \frac{\beta_k^{\alpha_k|k-1}}{\Gamma(\alpha_k|k-1)} \gamma_k^{\alpha_k|k-1-1 + N_{x,k} - 1} e^{-(\beta_k|k-1 + 1) \gamma_k}
\] (10a)
\[
= \Gamma(\alpha_k|k-1) \gamma_k^{\alpha_k|k-1 + N_{x,k} - 1} e^{-(\beta_k|k-1 + 1) \gamma_k}
\] (10b)
\[
\times \frac{\Gamma(\alpha_k|k-1 + N_{x,k}) \beta_k^{\alpha_k|k-1}}{\Gamma(1 + \alpha_k|k-1) \beta_k^{\alpha_k|k-1 + 1}}
\] (10c)
\[
= \Gamma(\alpha_k|k-1) \frac{\beta_k^{\alpha_k|k-1}}{\beta_k^{\alpha_k|k-1 + 1}} \gamma_k^{\alpha_k|k-1 + N_{x,k} - 1} e^{-(\beta_k|k-1 + 1) \gamma_k}
\] (10d)

where the predicted likelihood $\mathcal{L}_{\gamma_k}(\cdot)$ is a negative binomial distribution, see e.g. [8].

In case the true parameter is known to be constant over time, the posterior distribution can be predicted as $p(\gamma_k | \mathbf{Z}^{k-1}) = p(\gamma_k | \mathbf{Z}^{k-1})$. However, in the general case γ_k may change over time. We propose to use exponential forgetting with a forgetting factor $\frac{1}{\eta_k}$ for the prediction of γ_k,
\[
\alpha_k|k+1 = \frac{\alpha_k|k}{\eta_k}, \quad \beta_k|k+1 = \frac{\beta_k|k}{\eta_k},
\] (11)
where $\eta_k > 1$. This prediction has an effective window length $w_e = \frac{1}{1 - \eta_k} = \frac{1}{\eta_k - 1}$. Using exponential forgetting prediction with window length w_e approximately means that we only “trust” the information that was contained in the measurements from the last w_e time steps.

The expected value and variance of γ_k are
\[
E[\gamma_k] = \frac{\alpha_k}{\beta_k}, \quad \text{Var}(\gamma_k) = \frac{\alpha_k}{\beta_k^2}
\] (12)

Note that the prediction (11) corresponds to keeping the expected value constant while increasing the variance with a factor $\eta_k > 1$.

B. Extended target predicted likelihood

The measurement update and corresponding predicted likelihood is an important part of any framework for multiple target tracking under uncertain association and clutter. Let x_k denote the augmented extended target state,
\[
x_k = (\gamma_k, x_k).
\] (13)

Given a set of measurements \mathbf{Z}_k and a prior distribution $p(\xi_k | \mathbf{Z}^{k-1})$, the posterior distribution is
\[
p(\xi_k | \mathbf{Z}^k) = p(\mathbf{Z}_k | \xi_k)p(\xi_k | \mathbf{Z}^{k-1})
\] (14a)
\[
= p(\mathbf{Z}_k | \xi_k)p(\gamma_k | \mathbf{Z}^{k-1})p(x_k | \mathbf{Z}^{k-1}).
\] (14b)

Note that there is an implicit assumption here that the prior distribution $p(\xi_k | \mathbf{Z}^{k-1})$ can be factorized as $p(\gamma_k | \mathbf{Z}^{k-1})p(x_k | \mathbf{Z}^{k-1})$. This assumption neglects the dependence between the number of measurements and any extension parameters that are included in x_k. However the probability density over the number of measurements, conditioned
on the target extension, is unknown in most applications, and we believe that this assumption is valid in most cases.

Assume also that the measurement likelihood can be decomposed as
\[
p(Z_k | x_k) = p(Z_k, N_{z,k} | x_k) = p(N_{z,k} | x_k) p(Z_k | x_k).
\]
(15)
The validity of this assumption is also dependent on the considerations mentioned above. The posterior distribution and predicted likelihood is
\[
\begin{aligned}
\frac{p(\gamma_k | Z_k^k)}{\text{posterior}} & \times \mathcal{L}_\gamma \left(\alpha_{k|k-1}, \beta_{k|k-1}, N_{z,k} \right) \\
\times & \mathcal{L}_x (\bar{x}_{k|k-1}, Z_k^k),
\end{aligned}
\]
(16)
where \(x_{k|k-1}\) denotes the sufficient statistics of \(x_k\). Thus, any extended target tracking framework that estimates the states \(x_k\) can be augmented to also include estimates of the measurement rates \(\gamma_k\).

In the results section below we give an example where we integrate \(\gamma_k\) estimation into the ET-GM-PHD filter [4], [5]. The posterior distribution for \(\gamma_k\) and the corresponding predicted likelihood \(\mathcal{L}_\gamma(\cdot)\) are given in (10d). The details for the posterior distribution and predicted likelihood for \(x_k\), as well as the full filter recursion, can be found in [4], [5].

III. MULTI-TARGET MIXTURE REDUCTION

A straightforward way to model uncertainty in multiple target tracking is to use mixtures of distributions, see e.g. the Multi-hypothesis Tracking filter [9], or the Gaussian Mixture PHD-filters [4], [5], [10]. Let \(p(\cdot)\) be a mixture of distributions,
\[
p(\xi_k) = \sum_{j=1}^{J_{k|k}} w_j p_j(\xi_k)
\]
(17)
where each distribution \(p_j\) is called component. A common choice is to model the state \(x_k\) as a Gaussian distribution, see e.g. [4], [5], [9], [10], which would give a Gamma Gaussian (GG) distributed extended target \(\xi_k\). In Koch’s random matrix framework [11], the extent is modeled as an inverse Wishart distributed random matrix \(\bar{x}_k\), and the kinematic parameters\(^1\) are modeled as a random vector \(x_k\). In this case we have \(\xi_k = (\gamma_k, x_k, \bar{x}_k)\), and (17) would be a mixture of Gamma Gaussian inverse Wishart distributions.

A natural consequence of the tracking frameworks [4], [5], [9], [10] is the increasing number of mixture components, or hypotheses. To keep the target tracking implementation at a tractable level, the mixture must be reduced regularly, which is typically performed via pruning or merging. The output of

\(^1\)Position, velocity and acceleration.

mixture reduction is an approximate mixture,
\[
\bar{p}(\xi_k) = \sum_{j=1}^{\tilde{J}_{k|k}} w_j \bar{p}_j(\xi_k)
\]
\[
= \sum_{j=1}^{J_{k|k}} w_j \mathcal{GAM}(\gamma_k; \tilde{\alpha}_{k|k}^{(j)}, \tilde{\beta}_{k|k}^{(j)}; \hat{x}_{k|k}^{(j)}) p(x_k; \hat{x}_{k|k}^{(j)}),
\]
(18)
where \(\tilde{J}_{k|k} < J_{k|k}\) and the difference between \(p(\cdot)\) and \(\bar{p}(\cdot)\) is small by some measure. Here we address mixture reduction via component merging.

One approach to merging is to successively find component pairs that are close by some merging criterion, and merge them, see e.g. [4], [5], [10]. Different methods for merging of Gaussian mixtures are given in e.g. [12]–[16], a method for merging of Gaussian inverse Wishart mixtures is given in [17]. In Section III-A we give a theorem which is used to find the Gamma distribution \(q(\cdot)\) that minimizes the Kullback-Leibler divergence between \(\bar{w} q(\cdot)\) and the sum \(p = \sum_{i \in L} w_i p_i\), where \(w = \sum_{i \in L} w_i\) and \(L \subseteq \{1, \ldots, J_{k|k}\}\).

When the extended targets are modeled with a mixture (17), the merging criterion should consider both parts of the components, i.e. the distributions of both \(\gamma_k\) and \(x_k\). Different merging criteria for Gaussian distributions are given in e.g. [4], [5], [10], [12]–[16]. In Section III-B we give a merging criterion for mixtures of Gamma distributions.

A. Merging \(N\) Gamma components

The Kullback-Leibler divergence (KL-div),
\[
\text{KL}(p||q) = \int p(x) \log \left(\frac{p(x)}{q(x)} \right) dx,
\]
(19)
is a measure of how similar two functions \(p\) and \(q\) are. The KL-div is well-known in the literature for its moment-matching characteristics, see e.g. [18], [19], and for probability distributions it is considered the optimal difference measure in a maximum likelihood sense [13]–[15]. Note that minimizing the KL-div between \(p\) and \(q\) w.r.t. \(q\) can be rewritten as a maximization problem,
\[
\min_q \text{KL}(p||q) = \max_q \int p(x) \log (q(x)) dx.
\]
(20)

Theorem 1: Let \(p(\cdot)\) be a weighted sum of Gamma components,
\[
p(\gamma) = \sum_{i=1}^{N} w_i \mathcal{GAM} (\gamma; \alpha_i, \beta_i) = \sum_{i=1}^{N} w_i p_i(\gamma),
\]
(21)
where \(\bar{w} = \sum_{i=1}^{N} w_i\). Let
\[
q(\gamma) = \bar{w} \mathcal{GAM} (\gamma; \alpha, \beta)
\]
(22)
be the minimizer of the KL-div between \(p(\gamma)\) and \(q(\gamma)\) among all Gamma distributions, i.e.
\[
q(\gamma) \triangleq \arg \min_{q(\gamma) \in \mathcal{GAM}} \text{KL}(p(\gamma)||q(\gamma)).
\]
(23)
Then the parameter β is given by

$$\beta = \frac{\alpha}{\bar{w} \sum_{i=1}^{N} w_i \alpha_i},$$

(24)

and the parameter α is the solution to

$$0 = \log \alpha - \psi_0(\alpha) + \frac{1}{\bar{w}} \sum_{i=1}^{N} w_i (\psi_0(\alpha) - \log \beta_i) - \log \left(\frac{1}{\bar{w}} \sum_{i=1}^{N} w_i \frac{\alpha_i}{\beta_i} \right).$$

(25)

Proof: Given in Appendix A.

Remarks: The expression for β (24) corresponds to matching the expected values under both distributions q and p,

$$\bar{w} E_q [\gamma] = \sum_{i=1}^{N} w_i E_{p_i} [\gamma].$$

(26)

The expression for α (25) corresponds to matching the expected values of the logarithm under both distributions q and p,

$$\bar{w} E_q [\log \gamma] = \sum_{i=1}^{N} w_i E_{p_i} [\log \gamma].$$

(27)

A value for the parameter α is easily obtained by applying a numerical root finding algorithm to (25), e.g. Newton’s algorithm, see e.g. [20].

B. Merging criterion for Gamma components

In this section we derive a criterion that is used to determine whether or not two Gamma components should be merged. When reducing the number of components, it is preferred to keep the overall modality of the mixture. Thus, if the initial mixture $p(\cdot)$ has M modes, then the reduced mixture $\tilde{p}(\cdot)$ should have M modes.

The optimal solution to this problem is to consider every possible way to reduce $J_{k|k}$ components, compute the corresponding KL-div's, and then find the best trade-off between low KL-div and reduction of $J_{k|k}$. For $J_{k|k}$ components, there are $B_{J_{k|k}}$ different ways to merge, where B_i is the ith Bell number [21]. Because B_i increases rapidly with i, e.g. $B_5 = 52$ and $B_{10} = 115975$, the optimal solution can not be used in practice.

Instead a merging criterion must be used to determine whether or not a pair of Gamma components should be merged. As merging criterion the KL-div could be used, however because it is asymmetrical,

$$\text{KL}(p|q) \neq \text{KL}(q|p),$$

(28)

it should not be used directly. Instead we use the Kullback-Leibler difference (KL-div), defined for two distributions $p(\gamma)$ and $q(\gamma)$ as

$$D_{KL}(p(\gamma), q(\gamma)) = \text{KL}(p(\gamma) || q(\gamma)) + \text{KL}(q(\gamma) || p(\gamma))$$

(29a)

and

$$p(\gamma) = \text{GAM}(\gamma; \alpha_1, \beta_1),$$

(30a)

$$q(\gamma) = \text{GAM}(\gamma; \alpha_2, \beta_2).$$

(30b)

The KL-div between $p(\cdot)$ and $q(\cdot)$ is

$$\text{KL}(p(\gamma) || q(\gamma)) = \alpha_1 \log \beta_1 - \log \Gamma(\alpha_1) + (\alpha_1 - 1) (\psi_0(\alpha_1) - \log \beta_1) - \alpha_1 - \alpha_2 \log \beta_2 + \log \Gamma(\alpha_2) - (\alpha_2 - 1) (\psi_0(\alpha_2) - \log \beta_1) + \beta_2 \frac{\alpha_1}{\beta_1}$$

(31a)

$$= \log \left(\frac{\beta_1^{\alpha_1}}{\beta_2^{\alpha_2}} \right) + \log \left(\frac{\Gamma(\alpha_2)}{\Gamma(\alpha_1)} \right) + (\alpha_1 - \alpha_2) (\psi_0(\alpha_1) - \log \beta_1) + \alpha_1 \left(\frac{\beta_2}{\beta_1} - 1 \right) .$$

(31b)

and the KL-div between q and p is defined analogously. The KL-div between p and q becomes

$$D_{KL}(p(\gamma), q(\gamma)) = (\alpha_1 - \alpha_2) \left(\psi_0(\alpha_1) - \psi_0(\alpha_2) + \log \frac{\beta_2}{\beta_1} \right)$$

(32)

$$+ (\beta_2 - \beta_1) \left(\frac{\alpha_1}{\beta_1} - \frac{\alpha_2}{\beta_2} \right).$$

C. Merging of extended target components

When merging is used to reduce an extended target mixture (17), the merging criterion should be defined over both γ_k and x_k. For example, the following merging criterion could be used

$$D_{KL}(p_i(\xi_k), p_j(\xi_k)) < U,$$

(33)

where $D_{KL}(\cdot)$ is the KL-div between two extended target components. Owing to the assumed conditional independence of the distributions over γ_k and x_k in (14), the KL-div can expressed as a sum

$$D_{KL}(p_i(\xi_k), p_j(\xi_k)) = D_{KL}^\gamma(i, j) + D_{KL}^x(i, j),$$

(34)

where $D_{KL}^\gamma(i, j) = D_{KL}(p_i(\gamma), p_j(\gamma))$ is given in (32) and $D_{KL}^x(i, j) = D_{KL}(p_i(x), p_j(x))$. Thus, the following merging criterion could alternatively be used

$$\left(D_{KL}^\gamma(i, j) < U_\gamma \right) \& \left(D_{KL}^x(i, j) < U_x \right),$$

(35)

where $\&$ is the logical and operator. In case x_k is Gaussian distributed, possible merging criterions $D_{KL}^x(i, j)$ are given in e.g. [10], [12].
The Gamma mixture parameters were sampled using the merging method and criterion presented in Section III. The Gamma parameters, at the expense of being more sensitive to noise. As with any prediction and correction recursion, setting the parameter requires a trade off between noise cancellation and tracking capabilities.

D. Multiple target results

The Bayesian γ_k estimator was integrated into the Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter [4], [5]. A scenario with three targets was simulated for 100 time steps, the true Poisson rates were set to $\gamma_0^{\text{(1)}} = 5$, $\gamma_0^{\text{(2)}} = 15$ and $\gamma_0^{\text{(3)}} = 30$. Estimation results for $\eta_k = 2.25$ are shown in Figure 4a. The estimates

$$\hat{\gamma}_k^{(i)} = \frac{\alpha_k^{(i)}}{\beta_k^{(i)}}$$

are a bit noisy, however they remain within the bounds given by

$$\gamma_k^\pm = \sqrt{\gamma_k}$$

i.e. the true mean \pm one standard deviation. With $\eta_k = 1.01$ the estimation error is much smaller, see Figure 4b. However, as discussed previously, with a low η_k the response to changes in the true parameter would be slower.
APPENDIX A

PROOF OF THEOREM 1

First we derive an expected value which is needed in the proof of Theorem 1.

A. Expected value of logarithm

Let y be a uni-variate random variable. The moment generating function for y is defined as

$$\mu_y(s) \triangleq \mathbb{E}_y[e^{sy}]$$

and the expected value of y is given in terms of $\mu_y(s)$ as

$$\mathbb{E}[y] = \frac{d\mu_y(s)}{ds}\bigg|_{s=0}.$$ \hspace{1cm} (41)

Let $y = \log \gamma$, where $\gamma \sim \mathcal{GAM}(\gamma; \alpha, \beta)$. The moment generating function of y is

$$\mu_y(s) = \mathbb{E}[^s\gamma]$$

$$= \int \gamma^s \frac{\beta^\alpha}{\Gamma(\alpha)} \gamma^{\alpha-1} e^{-\beta \gamma} d\gamma$$

$$= \frac{\beta^\alpha}{\Gamma(\alpha)} \frac{\Gamma(s+\alpha)}{\beta^{s+\alpha}} \int \mathcal{GAM}(\gamma; s+\alpha, \beta) d\gamma$$

$$= \frac{\Gamma(s+\alpha)}{\beta^s}$$ \hspace{1cm} (42d)

The expected value of y is

$$\mathbb{E}[y] = \mathbb{E}[^s\log \gamma]$$

$$= \frac{d}{ds} \left(\frac{\Gamma(s+\alpha)}{\beta^s} \right)\bigg|_{s=0}$$

$$= \frac{d}{ds} \left(\frac{\Gamma(s+\alpha)}{\beta^s} \right)\bigg|_{s=0} + \left(\frac{\Gamma(s+\alpha)}{\beta^s} \right) \frac{d}{ds} \left(\frac{1}{\beta^s} \right)\bigg|_{s=0}$$

$$= \psi_0(\alpha) - \log \beta$$ \hspace{1cm} (43d)

where $\psi_0(\cdot)$ is the digamma function (a.k.a. the polygamma function of order 0).

B. Proof

Proof: We have $q(\cdot)$ given as

$$q(\gamma) \triangleq \arg\min_q KL(p||q)$$

$$= \arg\max_q \int p(\gamma) \log(q(\gamma)) d\gamma$$

$$= \arg\max_q \sum_{i=1}^N w_i \int p_i(\gamma) \log(q(\gamma)) d\gamma,$$ \hspace{1cm} (44c)

where the ith integral is

$$\int p_i(\gamma) \log(q(\gamma)) d\gamma$$

$$= \int p_i(\gamma) [\alpha \log \beta - \log \Gamma(\alpha) + (\alpha + 1) \log \gamma - \beta \gamma] d\gamma$$

$$= \alpha \log \beta - \log \Gamma(\alpha) + (\alpha - 1) E_i [\log \gamma] - \beta E_i [\gamma]$$

$$= \alpha \log \beta - \log \Gamma(\alpha) + (\alpha - 1) (\psi_0(\alpha_i) - \log \beta_i) - \beta \frac{\alpha_i}{\beta_i}. $$ \hspace{1cm} (45)
Taking the derivative of the objective function with respect to β, equating the result to zero, and solving for β, we get

$$\beta = \frac{\alpha}{\sum_{i=1}^{N} w_i \alpha_i / \beta_i}. \quad (46)$$

Now, we take the derivative of the objective function with respect to α and equate the result to zero to obtain

$$0 = \sum_{i=1}^{N} w_i \left(\log \beta - \psi_0(\alpha) + \psi_0(\alpha_i) - \log \beta_i \right) \quad (47)$$

$$= \bar{w} \log \beta - \bar{w} \psi_0(\alpha) + \sum_{i=1}^{N} w_i \left(\psi_0(\alpha_i) - \log \beta_i \right). \quad (48)$$

Inserting β and rearranging the terms we obtain

$$0 = \log \alpha - \psi_0(\alpha) + \frac{1}{\bar{w}} \sum_{i=1}^{N} w_i \psi_0(\alpha_i) - \log \beta_i$$

$$- \log \left(\frac{1}{\bar{w}} \sum_{i=1}^{N} w_i \frac{\alpha_i}{\beta_i} \right). \quad (49)$$

ACKNOWLEDGMENT

The authors would like to thank the Linnaeus research environment CADICS and the frame project grant Extended Target Tracking (621-2010-4301), both funded by the Swedish Research Council, and the project Collaborative Unmanned Aircraft Systems (CUAS), funded by the Swedish Foundation for Strategic Research (SSF), for financial support.

REFERENCES

