Autostereoscopy and Motion Parallax for Mobile Computer Games Using Commercially Available Hardware

Jens Ogniewski
Agenda

- Introduction / Motivation
- Background
- Implementation
- Study
- Results & Discussion
Introduction / Motivation

- Recent push towards 3D displays
- 3D solutions for home & mobile entertainment “just around the corner”
- Concentration on movies, tv, etc.
 - Also studies
 - However: limited content
- In most games 3D description of world already included → 3D displays could be easily introduced
 - NVIDIA 3D Vision
 - Several other systems announced, may come already this year
Introduction / Motivation

- Can already existing systems be turned into (good) 3D displays?

- Do gamers want 3D displays?

- Chosen System:
 - Iphone 3G with Wazabee 3Dee-Shell
 - A simple non-interactive scene from a futuristic racing game
Background

- What is a 3D display?
 - Basically every display that heightens the depth reception
 - Stereoscopy
 - Motion Parallax
Background

- Motion parallax

- The change of the perspective in accordance to the occurring movement.

- Can be meaningful for gameplay
Background

- **Motion parallax**
 - Introduces via user tracking (e.g. face tracking, eye tracking)
 - Approximation via accelerometer possible
 - Usable with many modern gaming systems
 - Limitation: one user only (if not combined with multiview display)!
Background

- Stereoscopy:
 - Creating a different image for each eye using optical elements
Background

- Autostereoscopy:
 - Creating a different image for each eye using e.g. lenticular sheets
Background

- Autostereoscopy
 - User needs to sit at a certain position
 - Not possible together with motion parallax?

- Solution:
 - Move LEDs or optical element
 - Alternatively: dynamical allocation of the (sub)pixels to the views (e.g. using (sub)pixel masks)
 - called tilt-compensation in the following (since tracking via accelerometer)
Background

- Autostereoscopy, limitations:
 - Picketfence Effect
 - Visible black lines if optical element aligned with LED grid
 - Solution: use slanted optical element
 - Pixelmask becomes more complicated and irregular
 → may want to use anti-alias to remove introduced artifacts
Background

- Autostereoscopy, limitations:
 - Cross-Talk / Ghosting
 - One or both eyes see(s) pixel(s) destined to the other one
 - Can cause eye strain (eye pain, headache, disorientation)
Background

- Autostereoscopy, limitations:
 - Other artifacts exists
 - Less visible
 - Mostly solvable by finetuning the software
Implementation

- **Wazabee 3Dee Shell**
 - Autostereoscopic lenticular sheet for Iphone
 - Comes with its own shell, removable lenticular sheet

(Source: Manufacturer's Homepage)
Implementation

- Drawbacks
 - Touchscreen below lenticular sheet unusable
 - Since detachable: needs calibration every time when newly attached
Implementation

- **Drawbacks**
 - Iphone 3G: fixed graphics pipeline => no subpixel resolution, no anti-alias!
Implementation

- Drawbacks
 - Iphone 3G: fixed graphics pipeline => no subpixel resolution, no anti-alias!
Study

- **Overview**
 - Part 1: different masks (resolution vs. crosstalk)
 - Part 2: different depth cues (motion parallax, autostereoscopy, none)
 - Questionnaire (about the person, overall impression, usage scenarios)

- **Testgroup:**
 - 12 subjects, mainly male students of a technical program
 - 9 little or less experience with 3D displays, 3 medium
Study

1. Crosstalk optimized mask vs. Resolution optimized masks (higher values are better)

<table>
<thead>
<tr>
<th>Optimized for:</th>
<th>Crosstalk</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image quality</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>3D effect</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Stress factor</td>
<td>13</td>
<td>23</td>
</tr>
</tbody>
</table>

Really meaningful or tainted due to artifacts?
Study

2. Stereo Cues

<table>
<thead>
<tr>
<th>auto-stereoscopy</th>
<th>tilt compensation</th>
<th>motion parallax</th>
<th>distorted image</th>
<th>mean</th>
<th>std. derivat.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.83</td>
<td>1.11</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>7.83</td>
<td>1.40</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>3.67</td>
<td>2.35</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>4.08</td>
<td>1.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.75</td>
<td>1.48</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>1.78</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>4.91</td>
<td>1.62</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>5.5</td>
<td>1.83</td>
</tr>
</tbody>
</table>

Image quality

<table>
<thead>
<tr>
<th>auto-stereoscopy</th>
<th>tilt compensation</th>
<th>motion parallax</th>
<th>distorted image</th>
<th>mean</th>
<th>std. derivat.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.25</td>
<td>2.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>6.58</td>
<td>1.93</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>3.00</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>5.08</td>
<td>2.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.15</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.58</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.42</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.25</td>
<td>1.14</td>
</tr>
</tbody>
</table>

3D effect
Study

3. Questionaire: Usage Scenarios

- One subject mentioned that he would even like such a system for professional applications, e.g. physical and chemical simulations
Results

- Can already existing systems be turned into (good) 3D displays?
 - Yes.
 - Especially motion parallax leads to a high increase in the 3D perception and is possible with many current gaming systems.

- Do gamers want 3D displays?
 - Yes.
Results

So what are we waiting for?
Results

- Improvements of the used system:
 - Optical tracking of user rather than accelerometer!
 - Use programmable graphics hardware!
 - Resolution too low?
Questions?
Thank you very much!

For more info, visit me at:
http://www.icg.isy.liu.se/people/en/jenso/

www.liu.se