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QUANTUM-THEORETICAL RE-INTERPRETATION
OF KINEMATIC AND MECHANICAL RELATIONS

W. HEISENBERG
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contain, as basic element, relationships between quantities that are
apparently unobservable in principle, e.g., position and period of
revolution of the electron. Thus these rules lack an evident physical

coundat : 1 i the hone that the ]

above-mentioned rules were internally consistent and applicable to a
clearly defined range of quantum mechanical problems. Experience
however shows that only the hydrogen atom and its Stark effect are
amenable to treatment by these formal rules of quantum theory.
Fundamental difficulties already arise in the problem of ‘crossed
fields’ (hydrogen atom in electric and magnetic fields of differing
directions). Also, the reaction of atoms to periodically varying fields
cannot be described by these rules. Finally, the extension of the
quantum rules to the treatment of atoms having several electrons has
proved unfeasible.

It has become the practice to characterize this failure of the quan-
tum-theoretical rules as a deviation from classical mechanics, since the
rules themselves were essentially derived from classical mechanics.
This characterization has, however, little meaning when one realizes

Editor’s note. This paper was published as Zs. Phys. 33 (1925) 879-893. It was
Signed ‘Gottingen, Institut fiir theoretische Physik’.
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262 W. HEISENBERG 12

that the Einstesn—Bohr frequency condition (which is valid in all cases)
already represents such a complete departure from classical mechanics,
or rather (using the viewpoint of wave theory) from the kinematics
underlying this mechanics, that even for the simplest quantum-
theoretical problems the validity of classical mechanics simply cannot
be maintained. In this situation it seems sensible to discard all hope of
observing hitherto unobservable quantities, such as the position and
period of the electron, and to concede that the partial agreement of the
quantum rules with experience is more or less fortuitous. Instead it
seems more reasonable to try to establish a theoretical quantum
mechanics, analogous to classical mechanics, but in which only re-
lations between observable quantities occur. One can regard the

frequency condition and the dispersion theory of Kramersl together
1 recent papers2 as the most important first steps

with its extensions i

but additional terms occur in the next order of approximation, e.g.
terms of the form evp/rc3 which can be called ‘quadrupole radiation’.
In still higher order, terms such as epp2/rct appear. In this manner the
approximation can be carried to arbitrarily high order. (The following
symbols, have been employed: €, § are field strengths at a given
point, t the vector between this point and the position of the electron,
b the velocity and e the charge of the electron).

One may inquire about the form these higher order terms would
assume in quantum theory. The higher order approximations can
easily be calculated in classical theory if the motion of the electron i

1 H. A. Kramers, Nature 113 (1924) 673.

2 M. Born, Zs. f. Phys. 26 (1924) 379. H. A. Kramers and W. Heisenberg,
Zs. {. Phys. 31 (1925) 681. M. Born and P. Jordan, Zs. f. Phys. (in course of
publication) [33 (1925) 479; paper 7a].
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given in Fourier expansion, and one would expect a similar result in
quantum theory. This point has nothing to do with electrodynamics
put rather — and this seems to be particularly important — is of a
purely kinematic nature. We may pose the question inits simplest form
thus: If instead of a classical quantity x(f) we havea quantum-theoretical
quantity, what quantum-theoretical quantity will appear in place of
x(f)2?

Before we can answer this question, it is necessary to bear in mind
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electron with a point in space, considered as a function of time, by

means of observable quantities. However, even in quantum theory it
is possible to ascribe to an electron the emission of radiation. In order
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to characterize this radiation we first need the frequencies which
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As characteristic for the comparison between classical and quantum
theory with respect to frequency, one can write down the combination

relations:
Classical:

v(n, o) + v(n, B) = v(n, « + B).
Quantum-theoretical:

v, —a) +v(n —a,m —a— ) =v(n,n — o« — B)
or

vim—Bn—a—pB) +v(n,n—p) =v(n,n —a — f).

In order to complete the description of radiation it is necessary to
have not only the frequencies but also the amplitudes. The amplitudes
Mmay be treated as complex vectors, each determined by six inde-
Pendent components, and they determine both the polarization and
the phase. As the amplitudes are also functions of the two variables
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n and «, the corresponding part of the radiation is given by the follow-
ing expressions:
Quantum-theoretical :

Re{A(n, n — ) elo(®, n-a)t}, (1)

cimal.
dital.

Re{Uq(n) elo(mat], (2)

n1
92 §

At first sight the phase contained in % would seem to be devoid of
physical significance in quantum theory, since in this theory frequen-
cies are in general not commensurable with their harmonics. However,
we shall see presently that also in quantum theory the phase has a

theory. If we now consider a given quantity x(¢) in classical theory,
this can be regarded as represented by a set of quantities of the form

Q[a(n) eiw(n) (Xt’

which, depending upon whether the motion is periodic or not, can be
combined into a sum or integral which represents x(¢):

“+ oo
ya 2\ A -] Qr—/ N ot
xn,l) = 2ia ’&a(’n) elw(n)x
— 00

)
a

+ oo

x(n,t) = [ Uyln) eleMoatdy,

A similar combination of the corresponding quantum-theoretical
quantities seems to be impossible in a unique manner and therefore
not meaningful, in view of the equal weight of the variables » and
n—a. However, one may readily regard the ensemble of quantities
A(n, n—o)elo®, n-nt 35 a representation of the quantity x(¢) and then
attempt to answer the above question: how is the quantity x(¢)2 to be
represented?

The answer in classical theory is obviously:

+o0

%ﬁ(n) eio(n)Bt — Za QIaS)Iﬂ_a elo(n)(a+—a)t (3)
or
+ o0
= [ UpUp—y el (6+6-0)tdy, (4)

~—00
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so that
2 -~ +m Vet ) 2 LY I ri . A
%(2)2 = Xp Bg(n) elo(mbi (5)
or, respectively,
+ oo
— [ Ba(n) elomptdg. (6)
J LAY r \¥~/

In quantum theory, it seems that the simplest and most natural
assumption would be to replace equations (3) and (4) by:

+ oo
B(n,n — p) elo®, 1=0¢t = 3, (n, n — )A(n — o, n — B) elo(n, n=ft (7)
—o0
or
+ o0
= [ An,n— )Ur — a, n — f) elo(n, n-hidy, (8)
— o0
and in fact this type of combination is an almost necessary consequence
of the frequency combination rules. On making assumptions (7) and

just as great a physical significance as their classical analogues. Only
the origin of the time scale and hence a phase factor common to all the
A is arbitrary and accordingly devoid of physical significance, but

If we further ask for a representation for the quantity #(¢)3 we find
without difficulty:

Classical:
400 +o00
Cn,y) = X Za, 8 Wa(n)Us(n) Ay—a—s(n). (9)
Quantum-theoretical:
+o00 400

-~ _Z _Za,g An, n—a)A(n—o, n—a—pAMN—a—p, n—y) (10)

or the corresponding integral forms.

1
i Ct. also H. A. Kramers and W. Heisenberg, loc.cit. The phases enter essentially
o the expressions used there for the induced scattering moment.
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In a similar manner, one can find a quantum-theoretical represen-
tation for all quantities of the form x(t)*, and if any function f[x(t)]
is given, one can always find the corresponding quantum-theoretical
expression, provided the function can be expanded as a power series
in x. A significant difficulty arises, however, if we consider two quanti-
ties x(t), y(t), and ask after their product x(¢)y(t). If (f) is characterized
by %, and y(f) by B, we obtain the following representations for
x(t)y(t):

Classical:

Cpln) = i§° Wer () Ba—a().

Quantum-theoretical:

-
!

Cln, n— ) = — B).

y 7

gg
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Whereas in classical theory x(f)y(¢) is always equal to y(¢)x(¢), this
is not necessarily the case in quantum theory. In special instances,

o ’
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this product v9 should be replaced by g(vv+1)v), in order that vv be
the differential coefficient of v2. In a similar manner it would always

ra
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h

Apart from the deflculty just mentioned, formulae of the type (7),
(8) should quite generally also suffice to express the interaction of the
electrons in an atom in terms of the characteristic amplitudes of the
electrons.

2. After these considerations which were concerned with the kine-
matics of quantum theory, we turn our attention to the dynamical
problem which aims at the determination of the A, », W from the
given forces of the system. In earlier theory this problem was solved
in two stages:

1. Integration of the equation of motion

%+ f(x) = 0. (11)
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2. Determination of the constants for periodic motion through

§pdg = $midx = (= nh). (12)

If one seeks to construct a quantum-mechanical formalism

corresponding as closely as possible to that of classical mechanics,

it is very natural to take over the equation of motion (11) directly

into quantum theory. At this point, however, it is necessary - in
order not to depart from the firm foundation provided by those

auantities that are in nr1nr~1n1a observable — to rpn]anp the guanti tie
qua“\rlb‘-\/\) AN AAA IJ‘-L ‘lJ AN \1 A\, [ 95§
X

¥ and f(x) by their quantum-theoretical representatlves, as given in
§ 1. In classical theory it is possible to obtain the solution of (11) by
first expressing x as a Fourier series or Fourier integral with unde-

termined coefficients (and frequencies). In general, we then obtain an
infinite set of equations Q.Qntammp ‘Iﬂflﬂ]fP]V many unknowns. or

forced to adopt this method of solving equation (11) since, as has
been said before, it was not possible to define a quantum-theoretical

let us give a quantum-theoretical re-interpretation of the determina-

tion, from (12), of the constant of periodic motion. We assume that
(classically) the motion is periodic:

“+ 00
N — La u«a\n}c Ty \l\.)}
—o0
hence
+ 00
mx = m Za a(x(n)ida)neiam't
—o0
and

+o0
$§ midx = § mi2 dt = 2am I, an(n)a_x(n)alwy.

Furthermore, since a_x(#)=ax(n), as x is to be real, it follows that
+ o0

In the earlier theory this phase integral was usually set equal to
an integer multiple of 4, i.e., equal to nk, but such a condition does
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not fit naturally into the dynamical calculation. It appears, even whep
regarded from the point of view adopted hitherto, arbitrary in the
sense of the correspondence principle, because from this point of view
the J are determined only up to an additive constant as multiples of
h. Instead of (14) it would be more natural to write

d
— (nh) = — § mx2 dt,
dn
that is,
+00 d
k= Zﬂm -Zocaa'—(‘i; (awn.laalz). (15)

AAAAAA i ~ +hia 3 Aot ase
bUlldellL d,llu 111 pld,b Cé 1iis uluctm

culties due to the occurrence of half-integral quantum numbers.
If we look for a quantum-theoretical relation corresponding to (14)

and (15) and containing observable quantities only, the uniqueness
whwh h.qd been lost is automatically rpcfnrpd

+
&
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termined constant contained in the qudntities 4 is automatically
fixed by the condition that a ground state should exist, from which no
radiation is emitted. Let this ground state be denoted by #¢; then we
should have a(ng, #no—a)=0 (for «>0). Hence we may expect that the
question of half-integer or integer quantization does not arise in a
theoretical quantum mechanics based only upon relations between
observable quantities.

Equations (11) and (16), if soluble, contain a complete determi-
nation not only of frequencies and energy values, but also of quantum-
theoretical transition probabilities. However, at present the actual
mathematical solution can be obtained only in the simplest cases. In
many systems, e.g. the hydrogen atom, a particular complication

1 This relation has already been derived from dispersion considerations bY
W. Kuhn, Zs. Phys. 33 (1925) 408, and W. Thomas, Naturwiss. 13 (1925) 627-
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arises because the solutions correspond to motion which is partly
periodic and partly aperiodic. As a consequence of this property, the
quantum-theoretical series (7), (8) and equation (16) decompose into
a sum and an integral. Quantum-mechanically such a decomposition
into ‘periodic and aperiodic motion’ cannot be carried out in general.

Nevertheless, one could regard equations (11) and (16) as a satis-
factory solution, at least in principle, of the dynamical problem if
it were possible to show that this solution agrees with (or at any rate

does not r\nnfraﬂlr‘f'\ the guantum-mechanical relationshins which we

T 11V L LvuviaivaGia b Rad Liaian tJJ YyiiaL11 vVyo

know at present. It should, for instance, be established that th

introduction of a small perturbation into a dynamical problem leads
to additional terms in the energy, or frequency, of the type found by
Kramers and Born — but not of the type given by classical theory.

Furthermore, one should also investigate whether equation (11) in
LLI\ "\V‘I\{"(\h" n11r\h+11m 4'1’\(\{\"(\4"/\’\1 ;nwm 11111 1A 1.“ Nf\“l\‘ﬂf\‘ N':vvl'\ ‘A:Al\ ‘LI\
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L [] E—
an energy integral {mx24-U(x)=const., and whether the energy so

derived satisfies the condition AW——kv, in analogy with the classical
condition v=0W/[d]J. A general answer to these questions would

from a general connection between Kramer’s dispersion formula and
equations (11) and (16), we can answer the above questions only in

very special cases which mav be solved bv simple recursion relation

The general connection between ramers’ dispersion theorv and
A AA b\/l‘.\/‘.“‘- N/ \JAAdAAN/NS VANSAL A/ & VY N\ via A AT VWVIIVVVT VU \.&Lut}\/l.ul.vx; "‘.‘\/VLJ A AL
O1IT £ciT S 41 f1 ...,J 114 3¢ ng fallassie Baeama ampiiation /11) feaeoann
our equations (! 1) ana (16) is as IoLOWS. rrom ejuation (i1) (more

precisely, from the quantum-theoretical analogue) one finds, just as
in classical theory, that the oscillating electron behaves like a free
electron when acted upon by light of much higher frequency than
any eigenfrequency of the system. This result also follows from
Kramers’ dispersion theory if in addition one takes account of equation
(16). In fact, Kramers finds for the moment induced by a wave of
the form E cos 27mmt:

2 = [lam,n+ «)2(n,n + a)
M — .2 Zy, _
e2E cos 2nvt h% l Vn 7+ o) — 2

_ la(n, n — o)>(n, n — a) }

v2(n, n — o) — v2



270 W. HEISENBERG . 12

so that for v>v(n, n+«),

M= — 2Ee” C:; i ia {la(n, n + a)|2v(n, n + o)
v

— la(n, n — &)|2¥(n, n — &)},
which, due to equation (16), becomes

e2E cos 2t
4n2my2

M=—

3. As a simple example, the anharmonic oscillator will now be
treated:

%+ wix + x2 = 0. (17)
Classically, this equation is satisfied by a solution of the form
x = Aag + a3 cos wt + Aag cos 2wt + A2ag cos 3wt + ... AT la; cos Twt,

Aa(n, n); a(n,n — 1) cos w(n, n — 1)¢;

{an  aa PSP PV N4,
ILu\H/, T — L} (910 ] W\’l«, nw — L}b,

.. A la(n,n — 1) cos w(n, n — 1)t ....

ol
ind
~
d
>
d
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excluding, terms of order 4) according to equations (3), (4) or (7), (8) are:
Classical
woao(n) + $ai(n) = O;
— w2 + w? = 0;
(— 40? + wdas(n) + }a? = O; (18)

(— 902 + wl)as(n) + ajas = 0;
Quantum-theoretical :
wiao(n) + Ha2(n + 1, n) + a?(n, n — 1)] = 0;
— w2(n,n — 1) + w2 = 0;
[—wi(n, n—2)+wia(n, n—2)+3a(n, n—)am—1,n—2)] = 0; (19)
[— w?(n,n — 3) + wila(n, n — 3)
+4la(n, n—1)a(n—1, n—3)]+4[a(n, n—2)a(n—2, n—3)] = O;

ooooooooo
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The additional quantum condition is:
Classical (J=mnh):

NS ST

+ o0
1 = 2am —— 3 }72|a:’w.
dJ ‘&%
Quan tum-theoretical :
o0
h=am 3 [al + 7, )2 onr + 1, 1) — laln, n — 7|2 o, 1 — ).
0

We obtain in first order, both classically and quantum-mechanically

(n + const)h

ain) or a(n,mn —1) = (20)

M0

PR R

In quantum theory, the constant in equation (20) can be determined
from the condition that a(ng, np—1) should vanish in the ground

state. If we number the # in such a way that in the ground state # is

where »(t) represents a factor independent of #. In quantum theory,

equation (19) implies

1/ n!
an,n — ) =%(t) || —— (21)
7 \ v — L} .
V11CL1 T ﬂ\ L’ 10 L11T SalllcT lJJ.U UVl Liviiallil 1AL LUl > ulucycuucut. vl .
Naturally, for large values of # the quantum-theoretical value of a;

tends asymptotically to the classical value.

An obvious next step would be to try inserting the classical ex-
pression for the energy imx2-+imwix2+3imix3=W, because in the
present first-approximation calculation it actually is constant, even
when treated quantum-theoretically. Its value is given by (19), (20)
and (21) as:

Classical:
W = nhwo|2n. (22)
Quantum-theoretical, from (7) and (8):

W = (n + })hwo/2n (23)

(terms of order 42 have been excluded).
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Thus from the present viewpoint, even the energy of a harmonic
oscillator is not given by ‘classical mechanics’, i.e., by equation (22),
but has the form (23).

The more precise calculation, taking into account higher order
approximations in W, a4, o will now be carried out for the simpler
example of an anharmonic oscillator %4 wZx-+Ax3=0.

Classically, one can in this case set

X = a1 cos wt + Aag cos 3wt + A2as cos Swt + ... ;

quantum-theoretically we attempt to set by analogy

as one finds by evaluating the equations corresponding to (18) and

(19).
£ and o f

Tf +ho avaliiatinn n P PePaY Aamtiatinng f \ A ( \ 1 parr

11 L1l1U Tvaiuatiivil vl w allu «v 11vuillil Cl.iu.a 1v115 \ , all \ } 10 vail
out to order 42 or 4 respectively, one obtains

3nh 3n2
on,n—1)=wy+ 1 —75— — 42 - (1702 4+ 7) + (24)
8rwgm 256w ym2m?
nh 3nh
a(n,n—l)zl/——-—<l —2————3——4—...). (25)
WM 16mawym

a(n,n — 3) = IV s nn — 1)(n — 2)-

32 T adwim3
39 — 1)k
-(1—1 = 1) ) (26)
32nwym

The energy, defined as the constant term in the expression
Imi2 + Imawdx? + jmixd,

(I could not prove in general that all periodic terms actually vanish,
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put this was the case for all terms evaluated) turns out to be

(n + %)hwo 3(n% + n + 3)h?

W = + 2
27 8- 4n2wim
h3
A2 (1778 4- 32 n2 4 329 4 2L) . (27)
512m3wym?

This energy can also be determined using the Kramers—Born ap-

ch by treatineg +tha +a amlard Ac a pertu rhatinn +n +ha ha n«-n
PLUG.\A; uy tivatiiig Lu\., term I"ww asS a pul ur ua.u.uu 1O tinie Narimon 119

oscillator. The fact that one obtains exactly the same result (27)
seems to me to furnish remarkable support for the quantum-mecha-
nical equations which have here been taken as basis. Furthermore, the
energy calculated from (27) satisfies the relation (cf. eq. 24):

In conclusion we consider the case of a rotator and call attention

to the relationship of equations (7), (8) to the intensity formulae for
the Zeeman effect! and for multiplets.2

theoretically, the ‘equations of motion’ simply state that the electron
describes a plane, uniform rotation at a distance a and with angular
velocity w about the nucleus. The ‘quantum condition’ (16) yields,
according to (12),

h = an (2nmalw),

and according to (16)

h = 2am{aw(n + 1, n) — a2w(n, n — 1)},

lp }? Goudsmit and R. de L. Kronig, Naturwiss. 13 (1925) 90; H. Hénl, Zs. {.
ys. 31 (1925) 340.

SltR de L. Kronig, Zs. f. Phys. 31 (1925) 885; A. Sommerfeld and H. Hénl,

X Zzllsl;gssé)gr d. Preuss. Akad. d. Wiss. (1925) 141; H. N. Russell, Nature 115
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from which, in both cases, it follows that

h(n + const)
2nma

wn,n —1) =

The condition that the radiation should vanish in the ground state
(no=0) leads to the formula

hn
wn,n —1) = Tk (28)
The energy is
W = imv2,
or, from equations (7), (8),
W w?(n, n—1) + wi(n41, n) _ h2 2tmtl) (29
2 2 8nPma2 © | 2

Ph DY o RS N,
Ulllcl 11011l t

~am 2~ +1 Ak -~
11€11L1011 LildL, dC-

~ o~ 1
heory, one mignt

cording to Kratzer,! many band spectra (including spectra for which
the existence of an electron momentum is improbable) seem to require

formulae of type (28), (29), which, in order to avoid rupture with the

71

e Goudsmit—Kronig—Hon ula fo
rotator we have to leave the field of problems having one degree of
freedom. We assume that the rotator has a direction in space which is
subject to a very slow precession o about the z-axis of an external field.
Let the quantum number corresponding to this precession be m. The
motion is then represented by the quantities

2: a(n,n — 1;m, m) cos w(n,n — 1)¢;

x + 1y: bin,n — 1; m, m — 1)ellomn-1+ol.

bn,n — 1; m — 1, m)ell—etnn=1+olt

The equations of motion are simply

1 Cf. for example, B. A. Kratzer, Sitzungsber. d. Bayr. Akad. (1922) p. 107
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Because of (7) this leads tol
%{%a'z(n, n—1;m, m)+bi(n, n—1;m, m—1)4-0%(n, n—1;m, m+1)
+ 3a2(n + 1, n; m,m) + b%2(n + 1, n; m — 1, m)
+ 82n + 1,n;m + 1, m)} = a2 (30)
jan,n — 1;m, m)a(n — 1, n — 2; m, m)
=bn,n— 1;mm-+ 1)b(n — 1,n —2;m 4+ 1, m)
+ o(n,n—1;mm — 1)on — 1,n —2;m — 1,m). (31)

One also has the quantum condition from (16):

2nmi{be(m, n — 1;m, m — on, n — 1)

They suffice (up to the unknown constant added to m) to determine

_--...- ....... \ 1 Liiniliowlil 2 2

2 ) -
The simplest solution of the quantum-theoretical equations (30),
(31), (32) which presents 1itself 1s:

b(n,n—l;m,m—l)=a/‘nﬂhmn—'__'_li;n—t_m),
. ] (m—m)n —m + 1)
b(n,n—l,m—l,m)—a/ 4+ In ;
. _ (nm+m-+ 1)(n — m)

an,m — 1;m,m) =a T B

These expressions agree with the formulae of Goudsmit, Kronig and
Honl, Tt is, however, not easily seen that these expressions represent
the only solution of equations (30), (31), (32), though this would seem
likely to me from consideration of the boundary conditions (vanishing

! Equation (30) is essentially identical with the Ornstein—Burger sum rules.
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of a and b at the ‘boundary’; cf. the papers of Kromig, Sommerfely
and Hénl, Russell quoted above).

Considerations sumlar to the above, applied to the multiplet ip.
tensity formulae, lead to the result that these intensity rules are iy
agreement with equations (7) and (16). This finding may again be
regarded as furnishing support for the validity of the kinematic
equation (7).

Whether a method to determine quantum-theoretical data using
relations between observable qud.uuuca, such as that PI‘OpGSt’Eu uere
can be regarded as satisfactory in principle, or whether this method
after all represents far too rough an approach to the physical problem

of constructing a theoretical quantum mechanics, an obviously very

Involved problem at the moment. can be decided o

S alavavw




