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Abstract— We propose a technique for joint calibration of
a wide-angle rolling shutter camera (e.g. a GoPro) and an
externally mounted gyroscope. The calibrated parameters are
time scaling and offset, relative pose between gyroscope and
camera, and gyroscope bias. The parameters are found using
non-linear least squares minimisation using the symmetric
transfer error as cost function.

The primary contribution is methods for robust initialisation
of the relative pose and time offset, which are essential for
convergence. We also introduce a robust error norm to handle
outliers. This results in a technique that works with general
video content and does not require any specific setup or
calibration patterns.

We apply our method to stabilisation of videos recorded by a
rolling shutter camera, with a rigidly attached gyroscope. After
recording, the gyroscope and camera are jointly calibrated
using the recorded video itself. The recorded video can then be
stabilised using the calibrated parameters.

We evaluate the technique on video sequences with varying
difficulty and motion frequency content. The experiments
demonstrate that our method can be used to produce high
quality stabilised videos even under difficult conditions, and that
the proposed initialisation is shown to end up within the basin of
attraction. We also show that a residual based on the symmetric
transfer error is more accurate than residuals based on the
recently proposed epipolar plane normal coplanarity constraint,
and that the use of robust errors is a critical component to
obtain an accurate calibration.

I. INTRODUCTION

This paper introduces a technique for joint calibration of
a sports camera and an externally mounted gyroscope. We
calibrate the time synchronisation (scaling and offset) and
the relative pose between the two sensors, as well as the
gyroscope measurement bias. The primary contribution is
a robust initialisation of the relative pose and time offset
parameters. The technique works with generic video and
gyroscope sequences, and a recorded video can thus be used
to first calibrate the setup, and then we can do a high quality
stabilisation of the same video. See figure 1 for an example
of input and output video frames.

Sports cameras (such as the GoPro series) are designed
for documentation of first person sports events, such as
cycling and mountaineering. Due to their small size they
are also increasingly popular on small mobile robots like
radio controlled cars and quadrotors. Sports cameras owe
their good performance/size ratio to the use of an electronic
rolling shutter [1], which needs to be considered in geometric
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(a) Original (b) Stabilised

Fig. 1: Example of stabilised frames from the RC-car
sequence (only the central part of frames are shown). The
red lines show the same row and column in both frames,
for reference. Note that the bent tree trunks in the input
video have been corrected in the output, and that inter frame
motion has been greatly reduced. See dataset webpage [7]
for videos.

computer vision, see e.g. [2]. Video stabilisation in post pro-
duction is an option [3], [4], but it has known failure cases.
For instance, the recently published Hyper-lapse2 algorithm
[6], produces summarising videos for GoPro video that look
impressive when played at 10x speed, but frame-by-frame
playback of e.g. walking sequences in the example videos
reveals severe rolling shutter artefacts, and geometric errors
near depth discontinuities. In contrast to post production
approaches, the gyro based correction used here can correct
for device rotations in all situations.

In the experiments we use an Arduino-based gyroscope
logger that can easily be mounted together with a camera on
small robot platforms. Compared to a gimbal solution, this
type of solution is smaller, weighs much less, and requires
very little power.

A. Related Work

Camera to IMU calibration is a well studied problem
in the case of global shutter cameras, see e.g. [8] for a
recent overview. Note however that the case of rolling shutter
cameras requires more accurate time synchronisation, that
can only be found by explicitly modelling a rolling shutter.
We will thus focus this section on calibration of camera-IMU
systems with rolling shutter cameras.

2Not to be confused with the recently released smartphone app Hyper-
lapse from Instagram, which is based on [5].



Calibration of rolling shutter readout time can be done
using a flashing LED [9], [3], or using checkerboard cal-
ibration [10]. In [10] video of a checkerboard calibration
pattern is recorded with a geometrically calibrated camera.
Using tracks of points on the checkerboard pattern, a non-
linear optimiser is used to find the camera trajectory relative
to the checkerboard, as well as the unknown readout time.

Another related work is [11]. In this paper SLAM on a
rolling shutter camera and IMU system is done, using a
sliding window batch estimation of the continuous camera
trajectory, while observing a calibration pattern. Errors in
camera tracks, gyro and accelerometer measurements are
optimised over. In the paper, the authors also investigate the
use of their framework to estimate the relative pose, bias and
the camera focal length. As the paper uses an expensive IMU
with GPS-clock synchronisation, no time synchronisation is
needed, and the rolling shutter readout is also pre-calibrated.
Several of the limitations in [11] are addressed in [12],
where an Extended Kalman Filter (EKF) is used to refine
the cellphone-IMU calibration parameters. In addition to
parameters used in [11], the radial and tangential distortion
parameters of the (narrow angle) camera are also refined,
as well as the time delay. EKF convergence is demonstrated
when initialised with small errors in the state vector.

Most similar to our problem is [13]. Here a cellphone with
a built-in gyroscope is calibrated using an EKF, and a novel
rotation constraint for rolling shutter cameras. Rolling shutter
readout time, relative pose, time delay and gyro bias are all
optimised over, and the author has made his implementation
available for download. Our tests of the author’s implementa-
tion on the supplied data sequence, reveal that the method is
very sensitive to initialisation. It diverges for small errors in
relative pose, and time delay. Our method improves on this
in that we provide a robust initialisation for both relative
pose and time synchronisation. Another difference is that
[13] also refine the linear intrinsics, f , cx, and cy , while
we require that these, and the radial distortion are known
beforehand. As [13] does not include radial distortion in their
implementation it is unfortunately not possible to directly use
their algorithm on sports cameras, but in the experiments, we
test their residual in our batch optimisation framework.

The optimisation of the unknown parameters in a camera-
IMU calibration is a non-convex problem, which requires
an initialisation sufficiently close to the global minimum.
The robust initialisation of the relative pose and the time
scale and offset that we introduce would thus also allow the
systems described in [13], [11], [12] to be used in more
general conditions.

Initialisation of the relative pose and time synchronisation
is also done in [14], but in a semi-automated fashion. Here a
gyro sensor is attached to a Kinect sensor and used to rectify
its depth maps. Sensor time synchronisation and relative pose
are estimated in a semi-automated fashion, using generated
rotations of the sensor package along two axes. The camera
intrinsics, and the rolling shutter readout time are assumed
to be known.

In summary, other authors have used optimisation to refine

method readout rel-pose offset sample rate initialisation generality
[10] 4 N/A N/A N/A 8 cpattern
[5] 4 8 4 8 8 4
[14] 8 4 4 4 8 rotations
[11] 8 4 8 8 8 cpattern
[13] 4 4 4 8 8 4
[12] 4 4 4 8 8 4

proposed 8 4 4 4 4 4

TABLE I: Related parameter estimation papers. Note that
previous approaches do not perform automatic parameter
initialisation. Note also that only [5], [13], [12] and the
proposed method are free of specific patterns or motions and
work under general conditions.

various subsets of the calibration parameters we estimate,
while assuming other parameters to be known, or assuming
specific recording conditions, see table I. However, none
of the previously introduced methods include an automatic
initialisation of relative pose and time synchronisation. Also,
none of the previous methods have been shown to work
on wide angle cameras. The proposed approach works also
in cases when the sensors are not sharing the same clock,
and with videos depicting generic scenes. This is not a
trivial matter, as the use of natural landmarks instead of a
calibration pattern requires a robust outlier rejection scheme
to be embedded in the estimation.

B. Structure

In section II we go through the background theory our
method builds upon. Section III gives details on our opti-
misation framework, and section IV describes how to find
good initial values for the optimisation. Finally section V
describes our experiments, and section VI summarises the
paper.

C. Notation

2D-vectors are written as lower-case, bold letters (xk), and
3D-vectors and matrices as upper-case bold letters (Xk, R).

We will often need to know if an entity belongs to the
camera or gyroscope frame of reference. This will be marked
with C or G as either super or sub script for that entity (RG,
dG, tC) depending on which is most appropriate.

II. THEORY

Our proposed method uses non-linear least squares opti-
misation to estimate the parameters. The aim of this section
is to provide the required theory, while simultaneously in-
troducing the cost functions used by the optimiser.

A. Rolling Shutter Geometry

Our rolling shutter camera to gyro calibration is based on
feature tracking across short segments of video. For this we
use the KLT tracker [15].

The tracker produces tracks on short intervals of video,
which we call slices. A slice Sl,m is computed from video
frames n ∈ [l,m] ⊂ N, and consists of K point tracks,
Sl,m = {Xk}Kk=1. Each track Xk consists of a set of image



plane locations, Xk = {xk,n}n∈[l,m], one for each of the
video frames n ∈ [l,m].

A successfully tracked 3D landmark Xk is related to the
observed image points in track Xk as

xk,n ∼ Kf(R(tk,n)Xk + p(tk,n),Θ) . (1)

Here ∼ denotes equality after projection of the right operand,
i.e. for vectors x ∈ R2, X ∈ R3 we have

x ∼ X ⇔
[
x1
x2

]
=

[
X1/X3

X2/X3

]
. (2)

The function f(X,Θ) in (1) is a lens-distortion function, op-
erating on normalised image coordinates, using the parameter
vector Θ. The matrix K is the internal camera calibration
matrix. The camera orientation R and optical centre p are
parameterised by a continuous time variable tk,n, which
corresponds to the time at which xk,n was observed by
the rolling shutter camera. As the readout is linear, the
observation time is proportional to the image coordinate plus
tn, the frame start time. That is

tk,n = tn + r · xk,n,row/Nrows , (3)

where r is the sensor readout time, xk,n,row is the image
coordinate along the rolling shutter axis, and Nrows is the
number of image lines along this axis.

As all rolling shutter rectification approaches neglect par-
allax effects, see e.g. [4], [16], we do likewise, and make the
simplifying assumption that the optical centre p is stationary
relative to the landmarks Xk. This means that we can remove
p from our equations, by choosing it as the origin of our
3D frame. In the experiments, we choose the lens model
f(X,Θ) as the three parameter FOV model which was
introduced in [17].

B. Cost Function

Gyro based video rectification relies on the relative pose
RCG between camera and gyro being known, as well as the
camera-gyro time delay, dC , the gyro data rate, fG, and the
gyroscope bias b. We propose to estimate these using non-
linear batch optimisation where the following cost function
is minimised

J(b, fG, dC ,RCG) = rT r , (4)

where r is a residual vector. The residual vector is con-
structed by stacking transfer errors based on individual
correspondences. For a correspondence k, between frames
l and m, the contribution consists of two errors with in total
four elements, as we use a symmetric transfer error:

r = [. . . εk,l,m εk,m,l . . .]
T
. (5)

The errors are defined as

εTk,l,m = Kf(uk,l,Θ)−Kf(Tl,m(uk,m),Θ) . (6)

Here u are normalized image coordinates, i.e.

u = f−1(K−1(x1 ),Θ) and x ∼ Kf(u,Θ) , (7)

and Tl,m() is the transfer function that transfers a point from
frame m to frame l

Tl,m(um) = R(tl)R
T (tm)um . (8)

As mentioned before, we assume that K and Θ are known,
and instead the sought parameters are to be found in the
computation of the camera orientation trajectory R(t) from
the gyro samples, as will be detailed in the next section.

Two more things about (8) should be mentioned before
we proceed. As the camera centre p(t) from the projection
equation (1) is absent from (8), parallax effects have been
neglected. Points with high parallax are instead handled by
our choice of error norm, see section III-B. Note also that
the two terms in (5) correspond to transfer errors in images l
and m respectively. This is thus the rolling shutter equivalent
of the symmetric transfer error often used in homography
estimation for global shutter cameras [18].

In [13], Jia and Evans propose a different residual than
(6), based on a rolling shutter version of the epipolar plane
normal coplanarity constraint [19]. For a triplet of corre-
spondences this constraint contributes a single element to
the residual vector [13]

ε1,2,3 = |⊥(u1,l,u1,m) ⊥(u2,l,u2,m) ⊥(u3,l,u3,m)| , (9)

where |·| is the matrix determinant, and ⊥(ul,um) is a vector
normal to the epipolar plane, formed by the correspondence
and the two corresponding camera poses. It is computed as

⊥(ul,um) = R(tl)
Tul ×R(tm)Tum , (10)

where × is the cross product operator.
Note that while (6) has four residuals for each corre-

spondence, (9) has one residual for each group of three
correspondences. We will compare these two residuals in
the experiments.

C. Camera Orientation

One of the parameters to be estimated is the relative
rotation between the camera and gyroscope, RCG. This
rotation is defined by the relation

RC = RCGRGRT
CG . (11)

where RG and RC is an orientation expressed in the refer-
ence frame of the gyroscope and camera, respectively. This
can be realized by noting that RG and RC are operators that
operate on points in the camera and gyro frames according
to

p′c = RCpc and p′g = RGpg , (12)

respectively. The transformation from gyro to camera allow
us to relate the same points as

pc = RCGpg and p′c = RCGp′g , (13)

which combined with (12) gives (11).
The relative orientation in (8) can thus be obtained as:

RC(tk,l)R
T
C(tk,m) = RCGRG(tk,l)R

T
G(tk,m)RT

CG , (14)

or ∆RC(tk,l, tk,m) = RCG∆RG(tk,l, tk,m)RT
CG . (15)



The orientation RG(t) is in practise obtained by SO(3) in-
tegration of the gyro signal ωadj(t), using the unit quaternion
integration method described in [20]. Before integration, the
gyro signal has been adjusted by a bias correction according
to

ωadj(t) = ω(t)− b , (16)

where b is a three element vector to be estimated.

D. Camera Time

In the previous section we saw how ∆RG(tk,l, tk,m) is
converted to the camera frame. However, the time index of
this sequence is still expressed in camera time frame. For
unsynchronised clocks, conversion between time frames can
be done using a scaling and an offset. When indexing the
gyro sequence it is convenient to express this conversion with
camera time tC in seconds, and gyro time tG in samples. This
gives us the relation

tG = fG(tC + dC) , (17)

where dC is an offset in seconds and fG is the gyro sample
rate in Hz. By combining (17) with (3), the observation time
of a particular image point xk,n can be expressed in the gyro
time frame as

tGk,n = fG
(
tCn + r · xk,n,row/Nrows + dC

)
. (18)

As before r is the camera readout time in seconds, and tCn is
the camera frame start time. The start time is computed from
the frame index, n, as tCn = n/fC where fC is the camera
frame rate.

Note that the camera frame rate fC is assumed to be
known. The effect of this is just a matter of choosing a
unit of time. Thus choosing it wrongly does not affect the
performance, but it does mean that the found gyro sample
rate fG and offset dC will be expressed relative to the chosen
camera frame rate. However, it is important that the readout
time r is calibrated against the chosen fC .

E. Video Stabilisation

For video stabilisation we use the method described in [3],
modified to use the FOV distortion model in [17].

A standard deviation of 20 was used for the Gaussian
smoothing in the experiments. This value provided a good
trade-off between a smooth camera path while still being
able to handle large motions. See figure 1 and the dataset
webpage [7] for sample output.

III. OPTIMISATION

We have now defined all the parameters that need to be
calibrated for, and as a summary we list them here again,
and also count their degrees of freedom (DOF):
• The time scaling and offset, fG, dC , 2 DOF.
• The gyro to camera transformation RCG, parameterised

as the axis-angle vector r = αn̂ ∈ R3, 3 DOF.
• The gyro bias b, 3 DOF.
In addition to these free parameters we also need to to

know the following fixed parameters:

• Rolling shutter readout time, r.
• Internal camera calibration matrix, K.
• Lens distortion parameters, Θ.
Subsets of these fixed parameters can be included in the

optimisation, as was done in e.g. [5] for the readout and
the focal length in K. However, we have found that adding
them will reduce the accuracy of the other parameters, and
including all the fixed parameters results in a system with
no unique solution.

We thus have in total, 8 DOF to determine by minimising
the cost function (4). This optimisation problem has many lo-
cal minima, and an appropriate initialisation of the optimiser
is thus crucial for success.

A. Selecting Correspondences from the Video

As a recorded sequence may vary substantially in length,
calibration of long sequences would be infeasible if all
possible correspondences were used. In order to keep the
computation time down we choose to use only parts of the
data.

We divide the video into a large number of short frame
intervals called slices, see section II. The slices are chosen
randomly over the entire video sequence. Each slice has a
random length (2-15 frames) and are spaced randomly from
each other (2-15 frames).

To improve the quality of the tracks, we perform track-
retrack [21], i.e. we track both forwards and backwards in
the slices, and only keep those tracks that were successfully
retracked to within 0.5 pixels of their initial positions.

We use the start and end point in each track to generate
correspondences.

B. Robust Cost Function

While the used track-retrack scheme (see section III-
A) will make sure that all the correspondences we have
are stable, it does not mean that they belong to the same
geometrical object, or satisfy the low-parallax assumption
(see section II-B). Thus, our set of correspondences is likely
to contain outliers.

In the global shutter case, outliers can be removed by
e.g. RANSAC, on a frame global motion model, such as
a homography or a fundamental matrix [18]. But this is not
possible with a rolling shutter. Instead we will optionally
replace the quadratic cost function (4) with a robust cost
[22]

J(b, fG, dC ,RCG) = ψ(r)Tψ(r) , (19)

where we use ψ(ri) =
ri

1 + |ri|/c
. (20)

Here ri are individual elements in the residual vector, and c
is a design parameter that can be used to scale the function.
This results in an error norm similar to German-McClure
[22], but with an additional scale parameter.

In the experiments we use the scale c = 3 for the residuals
in (6), and c = 10−5 for the constraint in (9), as they have
a different magnitude.



C. Local Minimiser
The optimisation of the cost function can be done us-

ing local minimisers such as Gauss-Newton, Levenberg-
Marquardt, and DogLeg [23]. We will use the minimiser
scipy.optimize.leastsq in SciPy (version 0.14.0)
[24] which uses the Levenberg-Marquardt algorithm. The
minimiser is either fed the residual vector r directly, or if
a robust norm is desired, the residual vector after applying
(20).

IV. INITIALISATION

As described in section III-C we refine the calibration
parameters using a local minimiser on a non-linear least-
squares cost function. All local minimisers require a starting
point sufficiently close to the global minimum. How to find
this starting point is the topic of this section.

A. Gyro Sample Rate
The data sheet for the gyroscope should list its available

output data rates. However, this value can be offset by a few
percent. In our case the error with respect to the data sheet is
6%, giving a maximum rate of approximately 855 Hz instead
of the listed 800 Hz.

By instead using timing information from the microcon-
troller which logs the gyroscope samples, we can get a more
accurate estimate of fG. A conservatve assumption is that the
controller clock has an accuracy of 0.5% or better, which in
our case translates to 4 Hz.

B. Time Offset
A classical approach to finding a time offset is to use signal

correlation, and for camera to IMU calibration, correlation
of gyro rates and estimated relative camera rotations have
proven to be a robust approach [25]. Another option is
to integrate the relative orientations and then use spatio-
temporal ICP for alignment [26]. In the rolling shutter case,
relative camera orientations are non-trivial to find, and a way
to avoid estimating them is to instead use the optical flow
magnitude, as proposed in [14]. We improve on this here, by
adding a coarse to fine search, which speeds up the search
by orders of magnitude.

In order to find the offset dC we will search for the
maximum correlation between the optical flow magnitude,
F (t), and the gyro magnitude G(t) = ‖ω(t)‖. The optical
flow magnitude, Fn = F (tn), at frame n is the mean pixel
distance of a number of points that have been tracked from
frame n to frame n+ 1.

However, in [14] the two logs were started by the same
program, and thus a small chunk of the two signals could be
extracted that was known to contain a generated movement.
Here we only assume two streams of data, and thus need to
correlate the entire sequences. In order to make this tractable,
we make use of a coarse to fine approach.

First, we resample the flow magnitude F (t), using an
upsampling factor of fG/fC and linear interpolation, i.e.:

Fn = (1− w)F (k) + wF (k + 1) where (21)
k = bnfC/fGc and w = nfC/fG − k . (22)

We then successively subsample both Fn and Gn in octaves,
by binning neighbouring samples, and find the offset τ in the
coarsest scale as the shift with the highest normalised cross
correlation. This shift is then refined, by trying neighbouring
shifts in successively finer scales. Once τ at the finest scale
has been found, we can compute a guess for the offset as
dC = τ/fC .

C. Gyro to Camera Transformation

With approximations of the time sync parameters, fG and
dC , we can make an initial estimate of the gyro to camera
transformation. This is possible since we now have a rough
idea which gyroscope samples belong to which frames.

Using the generated set of slices, we can create corre-
sponding pairs of rotation axes: one computed in the camera
reference frame, and one in the gyro reference frame. The
rotation axis for a slice Sl,m in the gyroscope reference
frame, n̂G

l,m is found as the rotation axis of the integrated
relative orientation from middle row times of frame l and
m.

To find the corresponding rotation axis in the camera refer-
ence frame, n̂C

l,m, we use the point correspondences between
the first and the last frame in Sl,m. First, the relative rotation
is estimated using RANSAC on a pure rotation constraint
on the normalised correspondences ul = Rlmum (see (7)).
RANSAC finds a solution to Rlm, by successively drawing
minimal samples of two correspondences [27], and finding
candidate rotations with the Orthogonal Procrustes Problem
(OPP) [28]. OPP requires three corresponding points, but the
third can be generated using the cross-product on the first two
points. Finally, the axis n̂C

l,m is extracted from Rlm.
From the set of slices, we have now computed a set of

rotation axes pairs n̂C
i ↔ n̂G

i , and using these we estimate
the final gyro-to-camera transformation using RANSAC. In
each iteration a candidate transformation is estimated from
two rotation axes pairs using OPP, as n̂C

i = RCGn̂G
i . For

evaluation we use the angle difference, θi, between the es-
timated camera rotation axis and the transformed gyroscope
rotation axis:

θi = arccos((n̂
C
i )TRCGn̂G

i ) (23)

D. Gyro bias

The gyro bias is initialised with a zero vector b = 0.

V. EXPERIMENTS

The following experiments were carried out to test our
method: 1) stability of parameter estimation when varying
the number of correspondences, 2) stability of parameter
estimation when varying the gyroscope sample rate, 3) sen-
sitivity to errors in the initial values, 4) stability of parameter
estimation depending on choice of residual function and
robust error norm.

In the absence of ground truth data we will use a set of
reference parameters. For each test sequence we performed
optimisation using several different slice sets, and the op-
timised parameters were then used to produce a stabilised
video. We carefully examined all the stabilised videos, and
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Fig. 2: The three sequences used in the experiments. Top to bottom: rotate, walk, and RC-car sequences. Rightmost column
shows normalised DFT plots of the corresponding gyro sequences (amplitude in radians as a function of frequency in Hz).

Fig. 3: Sensor logging plattform. Left: Uno32 Arduino-
compatible board with flash memory and SD card reader.
Right: L3G4200D triple-axis MEMS gyro.

the parameters that produced the best stabilised video were
then chosen as reference for that test sequence. We argue that
parameters that stabilises the video with good visual results
should be close to the true parameters.

A. Sensor Logging Platform

Our gyroscope sample logs are recorded using an
L3G4200D three-axis MEMS gyroscope from STMicro-
electronics, which we attach rigidly to the video camera
before recording. Our test sequences were captured using a
gyroscope sample rate of approximately 855 Hz. The sensor
platform is pictured in figure 3.

B. Test Sequences

In the experiments, we have used a GoPro HERO3+
Black Edition camera. The camera was set to record with
HD resolution (1920×1080), at 29.97 fps. We calibrated
the rolling shutter readout using the approach described
in [3]. For the camera geometry calibration we used the
checkerboard approach of Zhang’s [29], with radial distortion
modeled using the FOV model [17].

We use three video sequences with increasing level of
difficulty: (1) rotate, a sequence recorded with the camera

hand-held, and rotated roughly about its centre, (2) walk,
a walking sequence where the camera has been pointed
at various targets while walking, (3) RC-car, a sequence
recorded with the camera mounted on a radio controlled (RC)
model car, driving in rough terrain. Sample frames from the
three sequences are shown in figure 2, together with the DFT
of the gyro signal. As can be seen in the DFT-plots, the
amplitude of the rotation is the highest in walk, followed by
rotate and RC-car. However, what really makes a sequence
challenging is the frequency content, and as can be seen,
the RC-car sequence contains much more high frequency
content.

C. Experiment 1: Varying number of tracks

The number of correspondences used by the optimiser
have a direct influence on processing time, but should also
affect the quality of the parameter estimate.

We examined how the parameter stability changed when
using 400, 800, 1500, 3000, or 6000 correspondences. What
we found is that there is a weak tendency of higher stability
by using a higher number of correspondences, but there does
not seem to be any gain in using more than 1500.

D. Experiment 2: Gyro sample rate

To examine how a lower sample rate affects the accuracy
of the parameters we artificially reduced the sample rate
of our gyroscope by subsampling the logged gyroscope
signal with factors 2, 4, and 8. For each test sequence
and subsample factor, five optimisations were made using
different sets of slices.

Stability is examined by looking at the distribution of
errors in the parameters, relative to the reference parameters.
We show the error for the time parameters and relative pose.
For the relative pose we show the absolute angular difference
between the estimate and the reference. Bias is omitted since
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Fig. 4: Parameter convergence as a function of subsample
rate on the gyroscope sequence which was used for the
optimisation. For each interval, from left to right, with
decreasing background brightness, is the three sequences:
rotation, walk, and RC-car. The error is relative to the set of
reference parameters for each sequence.

its influence is small compared to the other parameters, and
also because it depends on the estimated relative pose.

As we can see in figure 4 the subsampling of the gyroscope
data in general does not affect the result. The most notable
exception is that the RC-car sequence failed when the
subsample factor is 8 (107 Hz). At this sample rate, the initial
time offset estimation fails.

E. Experiment 3: Sensitivity to Initialisation

Good initial values are important to make sure the optimi-
sation converges to a good solution. In this experiment we
examine the sensitivity to errors in the initialisation of the
time parameters.

As a measure of convergence we chose to look at the norm
of the residual vector, normalised by number of elements.

Figure 5 shows the normalised residual for four different
sets of slices generated from the walk sequence. All four
trials show similar basins of attractions, with convergence
for errors in the gyro rate and time offset within ±5 Hz and
±0.1 seconds respectively.

The error for most microcontroller clocks fall well within
this interval for the sample rate. The error for correlation-
based estimation of the offset is less than a frame, which
corresponds to 0.033 seconds in our case.

F. Experiment 4: Choice of Residual Function and Effect of
Robust Norm

In section III-B we argued that using a robust error norm
is important to mitigate the effect of outliers in the corre-
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Fig. 5: Residuals after convergence for four different slice
sets, as a function of an error in the initial value for the
time parameters. The residual is normalised such that the
minimum value is 1.

spondences, and in section II-B we described two different
residual functions. Figure 6 shows the parameter stability for
each choice of residual function, and with robust error norm
turned on or off. Like in the previous experiments we did
five optimisations per sequence.

As expected, there is a strong case for using a robust error
norm as the stability is greatly improved regardless of the
residual function that was used.

Comparing the two residual functions we can see that our
proposed residual results in more stable estimates than the
one of Jia and Evans [13]. It should however be noted that
while our original residuals have a clear geometric meaning
that is independent of the correspondence, the residual func-
tion in (9) will change size depending on the correspondences
chosen for a triplet. This means that choosing a constant
value c for the scale of the robust error norm in (20) is
much more difficult.

VI. CONCLUSIONS

We conclude that our initialisation scheme results in a
starting point that is well within the basin of attraction for
the cost function. We can also see that the use of a robust
error norm is a critical component to obtain an accurate
calibration. When comparing the Jia and Evans constraint
(9) and the symmetric transfer constraint (6) we observe
consistently better accuracy for the latter.

Our method currently requires known camera and lens
distortion parameters, as well as readout time. It would ob-
viously be useful if these parameters could also be included
in the optimisation. Camera and lens distortion should be
possible to include if a good enough initial estimate can be
provided. The readout time, however, is problematic since
it is coupled with the other time parameters. If it is also
optimised for, the stability of the found solution is degraded.
Thus we recommend that it is calibrated separately.
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Fig. 6: Parameter convergence for different choices of resid-
ual function, and with robust error norm on and off. For
each interval, from left to right, with decreasing background
brightness, is the three sequences: rotation, walk, and RC-
car. The error is relative to the set of reference parameters
for each sequence.

Our method works well and reliably on both the walk
and rotation test sequences. By well we mean that, when
using reasonable conditions for the optimiser, we have so
far always succeeded in creating a nicely stabilised video.
For the RC-car sequence the method also succeeds in most
cases, but we have occasionally observed cases when the
output video is not stabilised correctly. Our hypothesis is
that this is due to the much higher frequency content in the
video, and that the random slice creation sometimes fails to
generate sufficiently informative data. In the presence of high
frequency motion even a very small error in the estimated
sampling rate or time offset can cause negative interference
due to phase errors. This results in large visual errors. A
deterministic way to generate slices could help to avoid this
issue, and is something we intend to investigate in future
work.

When looking at resultant videos, 3D-structures look much
more rigid than in the input (see dataset webpage [7]). It
would be interesting to see whether structure-from-motion
accuracy on GoPro video improves if the proposed approach
is used.
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[21] J. Hedborg, P.-E. Forssén, and M. Felsberg, “Fast and accurate
structure and motion estimation,” in ISVC09, ser. Lecture Notes in
Computer Science, vol. 5875, November 2009, pp. 211–222.

[22] Z. Zhang, “Parameter estimation techniques: A tutorial with applica-
tion to conic fitting,” Journal of Image and Vision Computing, vol. 15,
no. 1, pp. 59–76, 1997.

[23] K. Madsen, H. B. Nielsen, and O. Tingleff, “Methods for non-linear
least squares problems, 2nd ed.” Technical University of Denmark,
Tech. Rep., April 2004.

[24] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific
tools for Python,” http://www.scipy.org/, 2001–.

[25] E. Mair, M. Fleps, M. Suppa, and D. Burschka, “Spatio-temporal
initialisation for IMU to camera registration,” in IEEE Int. Conf. Robot.
Biomimetics, 2011.

[26] J. Kelly and G. S. Sukhatme, “A general framework for temporal
calibration of multiple proprioceptive and exteroceptive sensors,” in
ISER10, 2010.

[27] M. Brown, R. Hartley, and D. Nistér, “Minimal solutions for
panoramic stitching,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR07), 2007.

[28] G. H. Golub and C. F. van Loan, Matrix Computations. Baltimore,
Maryland: Johns Hopkins University Press, 1983.

[29] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 11, pp. 1330–1334, 2000.


