Attentional Masking for Pre-trained Deep Networks

IROS 2017

Marcus Wallenberg and <u>Per-Erik Forssén</u> Computer Vision Laboratory Department of Electrical Engineering Linköping University

itle/Lecturer

Attention for robots

A: SLP projector (unused) B: RGB camera (unused) C: NIR camera (unused) D: Right wide-angle camera E: Left wide-angle camera F: SLP diffusor (unused)

Title/Lecturer

Attention for robots

I. Robot demo

This clip shows our robot sequentially attending to four targets and recognizing them, using the proposed attentional masking to select the object of interest.

Attention for robots

Left camera

Right camera

• What is the robot looking at?

Attention for robots

Left camera

Right camera

 What is the robot looking at? This is an ill-posed classification problem. Attention is the missing constraint

Image data

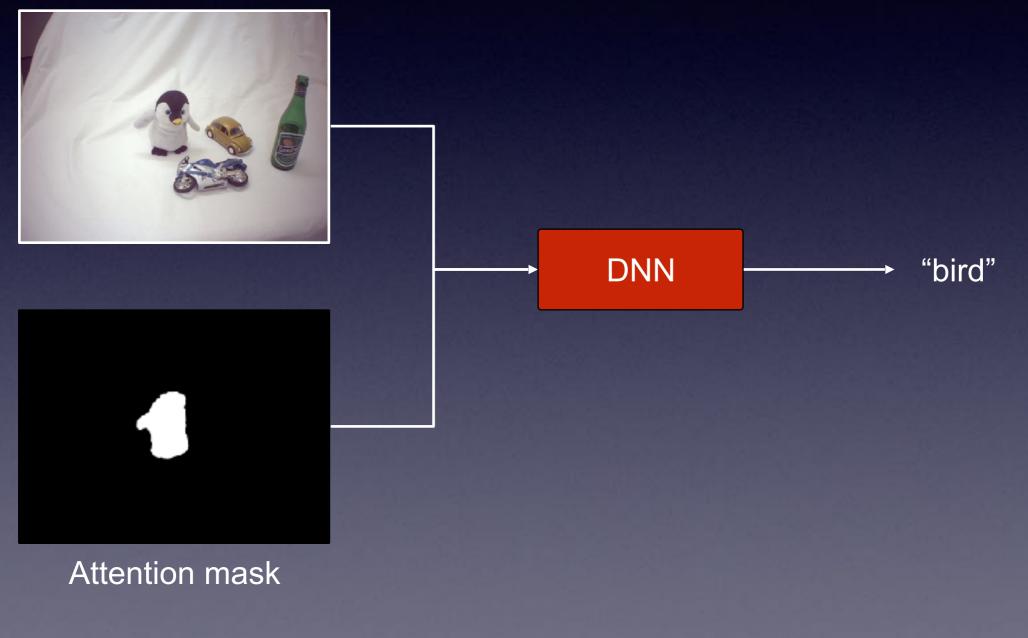


Image data



Image data

Image data

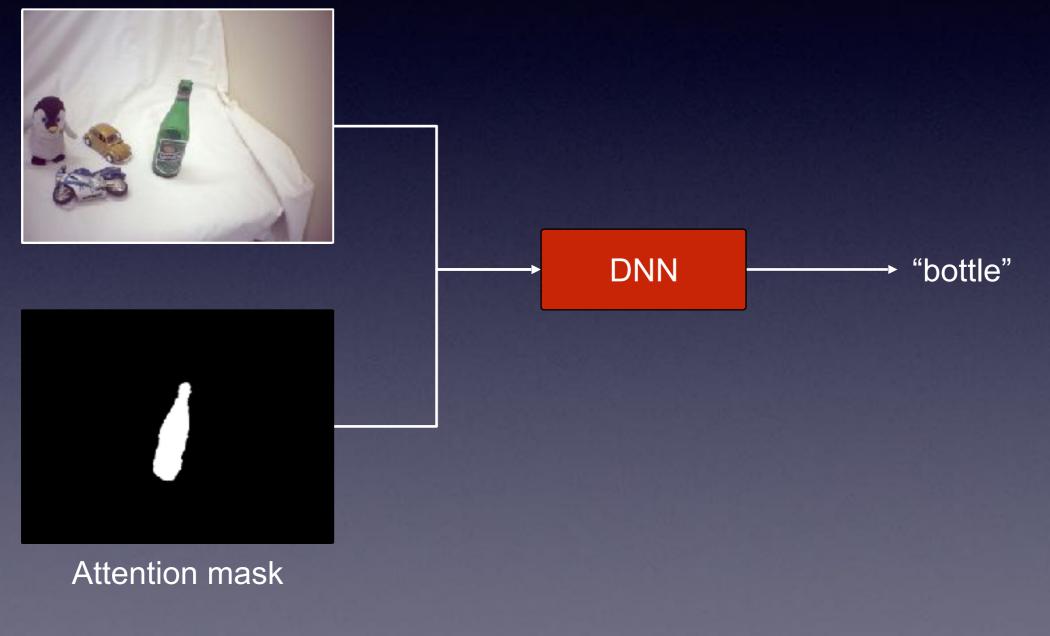
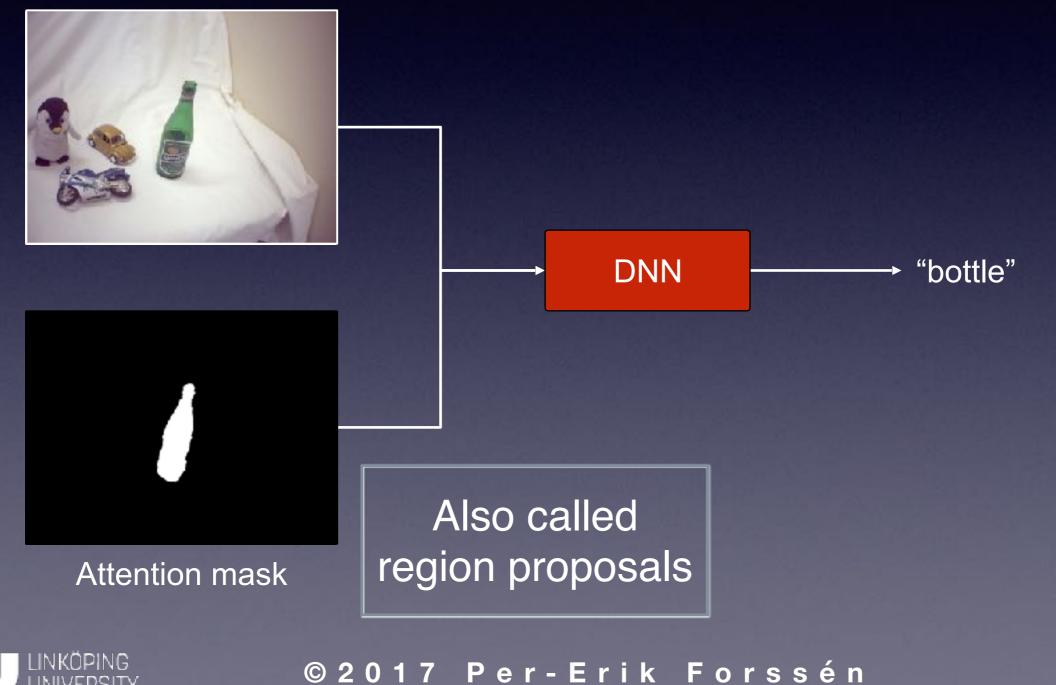
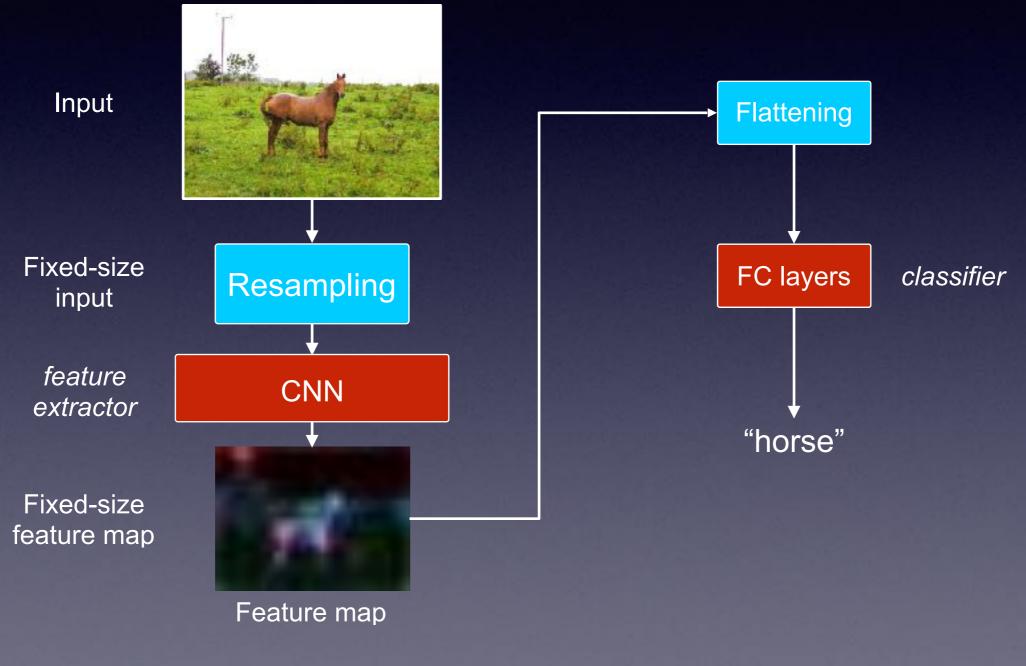


Image data

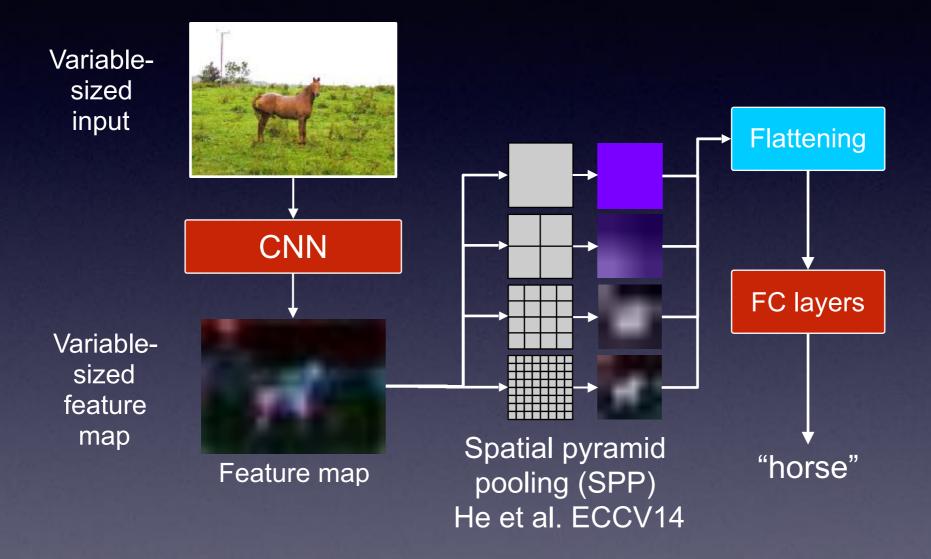


- Q0: How can we apply attention in a CNN framework?
- A0: Select a region of interest bounding box (a rectangle)
- Then show the network only the bounding box contents
- Q1: Can we do better?

Classical classification network

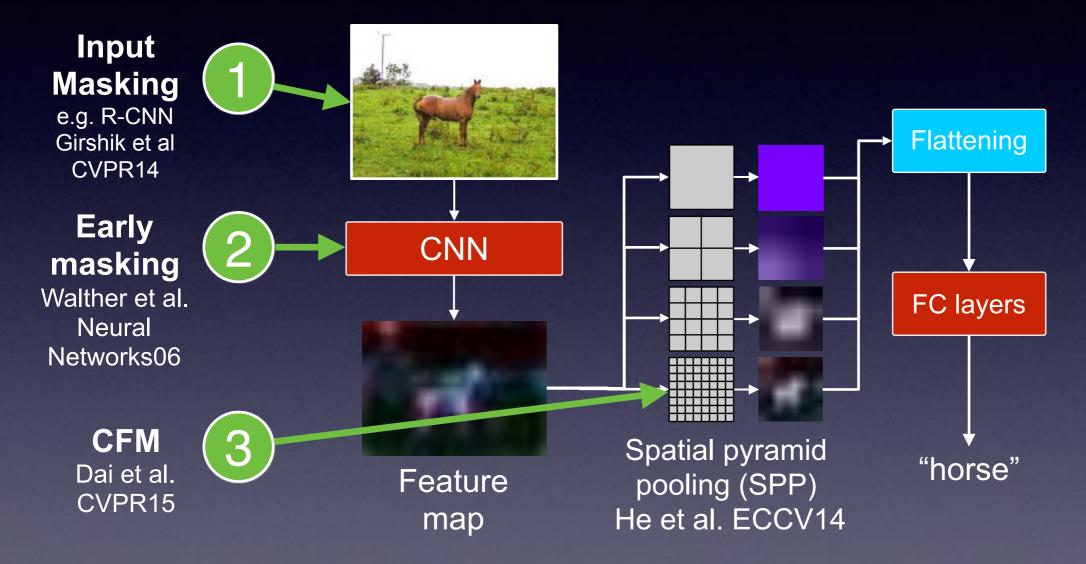


Modified classification network

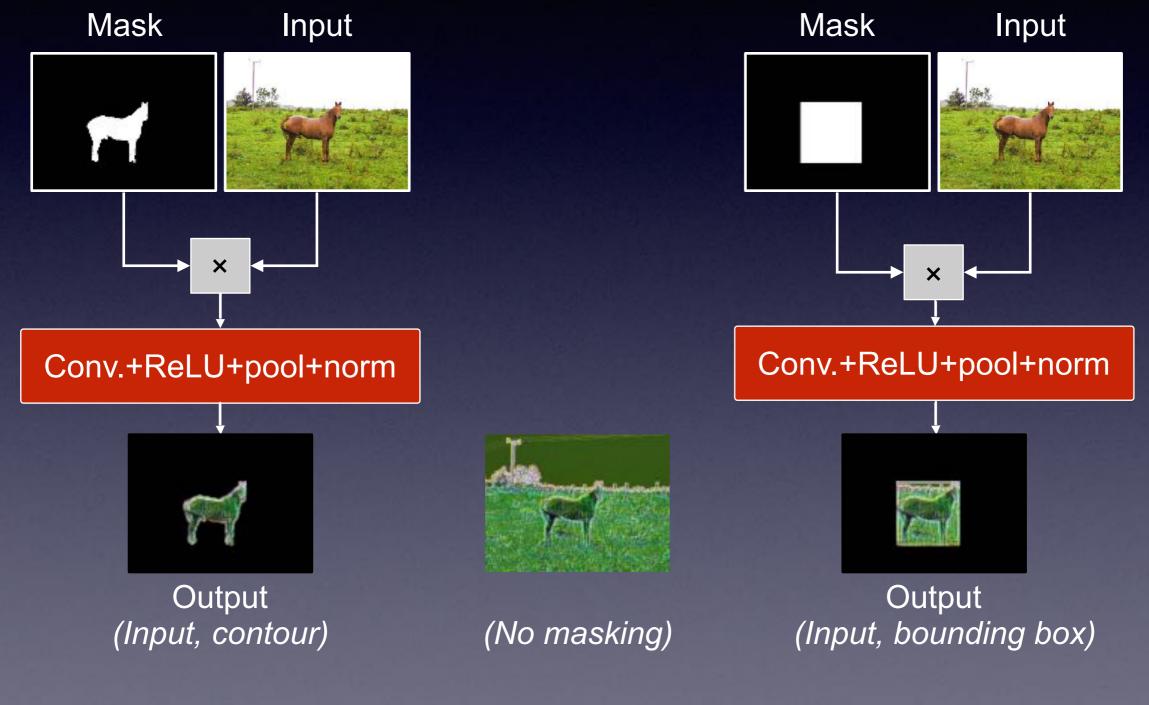


(Structure from Convolutional feature masking, Dai et al. CVPR'15)

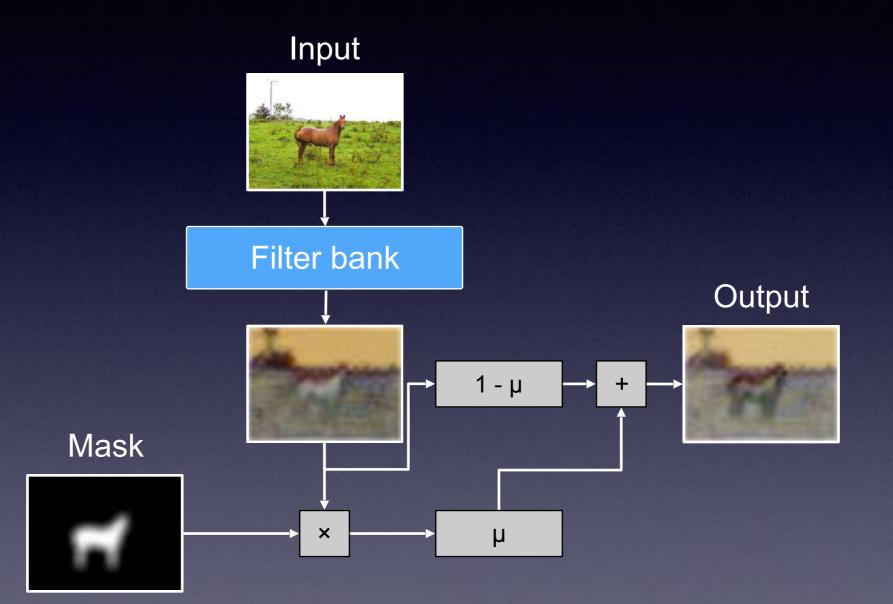
Where to apply attentional modulation?



Input masking

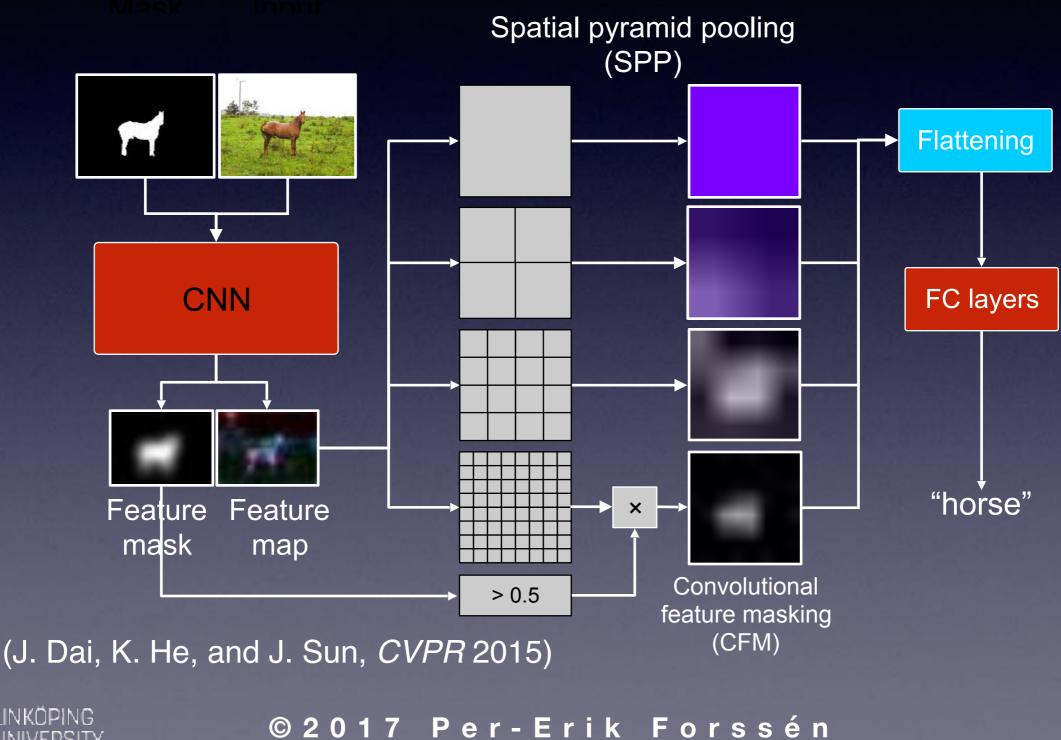


Mask and blend



(Walther & Koch, Neural Networks 2006)

Convolutional Feature Masking



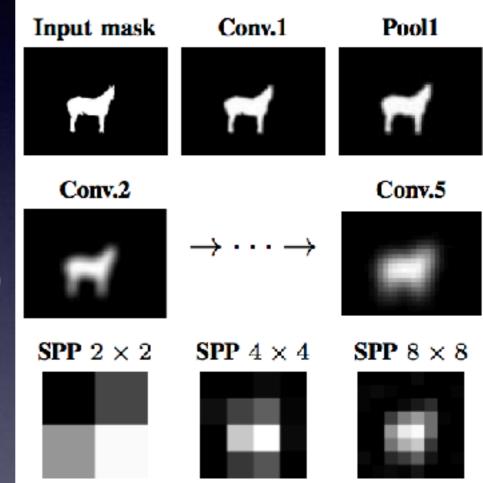
NIVERSITY

Multi-layer, continuous valued masking (MC-CFM)

 Idea: Apply mask at all convolutional levels, and only to some degree, like Walther and Koch did:

$$R(x,y) = \mu R_M(x,y) + (1-\mu)R_0(x,y)$$

 We now get another parameter µ, one for each layer in the network.

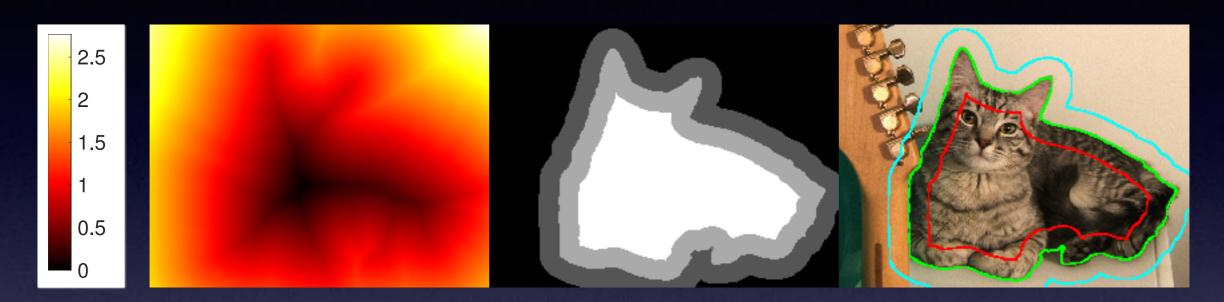


Training and Evaluation

- We want to decouple accuracy of attention masks from the performance of the masking procedures.
- For this reason we want to start with "perfect" masks that we can distort in a controlled way.

PASCAL-S masks

Mask perturbation



 To test sensitivity to mask errors, we grow and shrink the mask using the signed distance transform $t_d = 0.75$ $t_d = 1.0$ $t_d = 1.25$

Training and Evaluation

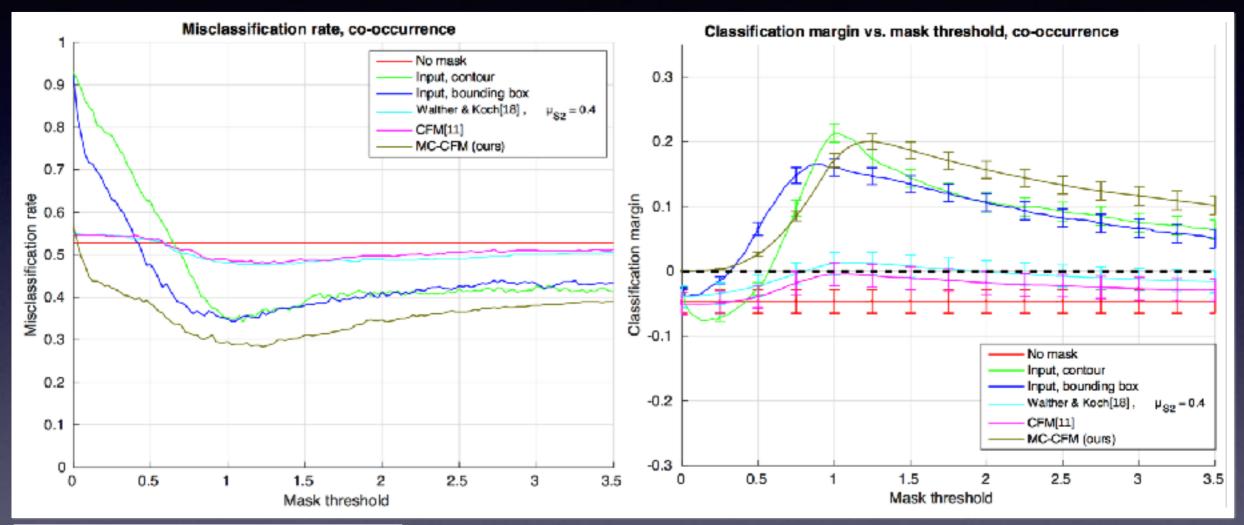
- Main network is VGG-F (similar to AlexNet, 5 conv, 3 fc) Pre-trained on ImageNet
- A subset of 11 PASCAL-S classes with high co-occurrence are used: horse, cup, chair, dog, bird, tree, bottle, motorbike, bicycle, car and person

PASCAL-S example

PASCAL-Context example

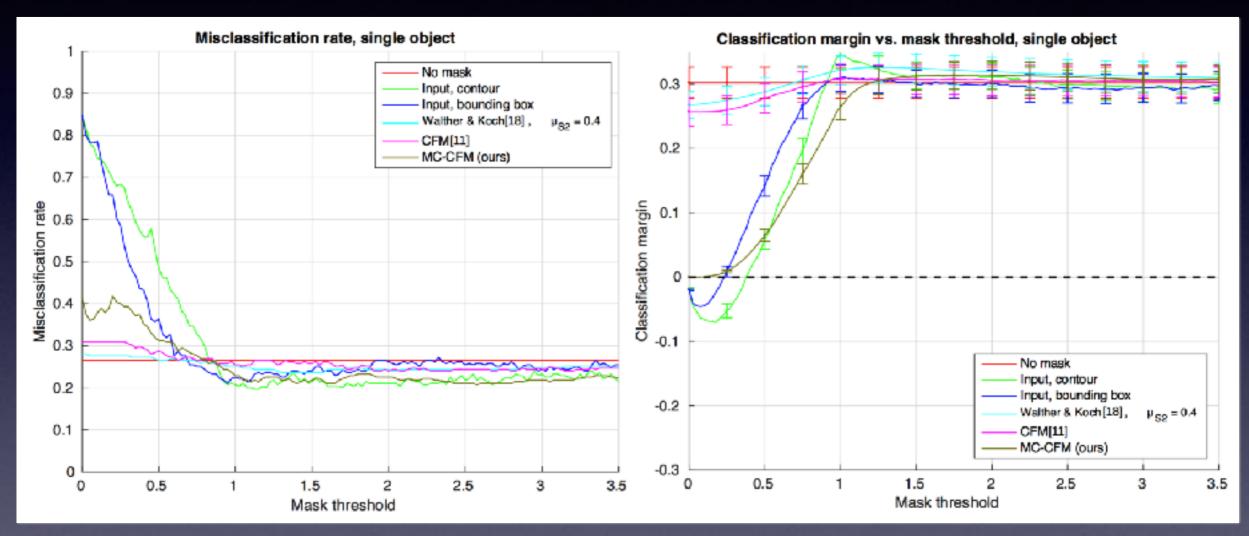
- Classification FC layers are trained on PASCAL-Context (excluding masks, and PASCAL-S)
- Mask blend weights are trained using NLSQ on top 1 % of cooccurrences ("crowded" scenes)
- Evaluation uses the remainder of PASCAL-S containing our classes.

Attentional masking under co-occurrence



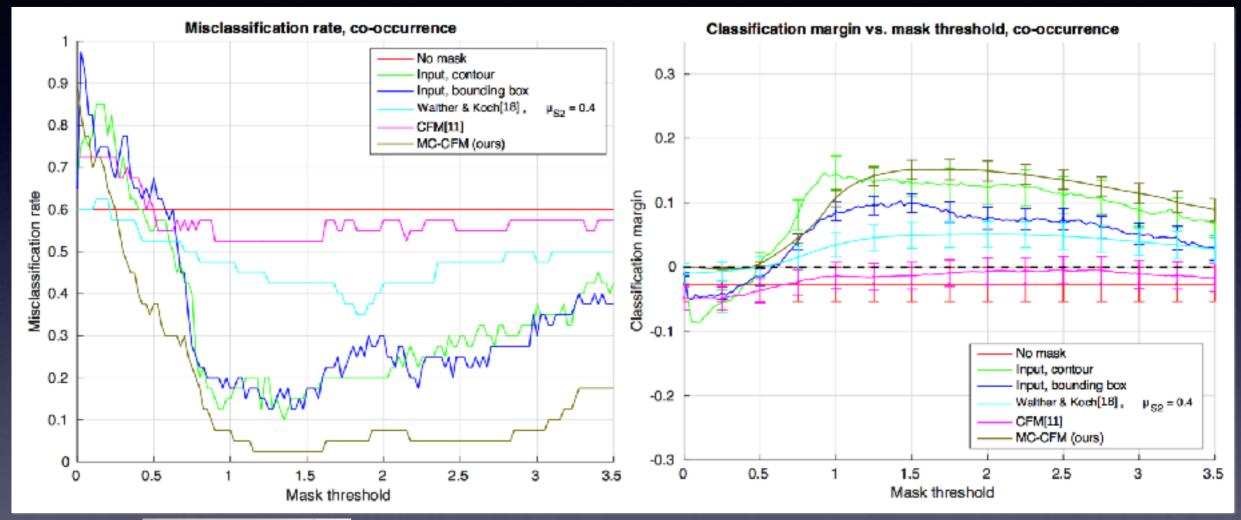
Results on PASCAL-S dataset, co-occurrence

Attentional masking w/o cooccurrence



Results on PASCAL-S dataset, single object

Results on robot with co-occurrence



Results on robot with co-occurrence

Summary

- The choice of attentional masking matters!
- By using multi-level masking we can reduce error rates substantially compared to using input masking
- On our robot 4% vs 17%
- On PASCAL-S 28% vs 35%

