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Abstract

In this paper, we introduce a novel framework for low-level image pro-
cessing and analysis. First, we process images with very simple, difference-
based filter functions. Second, we fit the 2-parameter Weibull distribution
to the filtered output. This maps each image to the 2D Weibull manifold.
Third, we exploit the information geometry of this manifold and solve low-
level image processing tasks as minimisation problems on point sets. For a
proof-of-concept example, we examine the image autofocusing task. We pro-
pose appropriate cost functions together with a simple implicitly-constrained
manifold optimisation algorithm and show that our framework compares very
favourably against common autofocus methods from literature. In particu-
lar, our approach exhibits the best overall performance in terms of combined
speed and accuracy.

1. Introduction

Low-level image processing typically involves the application of some type
of filter function onto the image data, which results in the extraction of
a number of desired feature descriptors. These descriptors are identified,
isolated and subsequently evaluated in the later stages of the image analysis
pipeline. The analysis step is often carried out in some representation of
the resulting feature space (e.g. histogram), an endeavour which can be
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Figure 1: An outline of the main components of our image processing framework, here
illustrating the autofocusing problem. The starting point is the image acquisition step.

both difficult and inefficient due to the arbitrary-dimensional, discretised
nature and inconvenient form of the space. So for example, distances, angles
and directions between elements of the feature space may not always be
defined or easily and accurately approximated. Furthermore, notions such
as mean and dispersion might not be applicable in certain feature spaces.
Therefore, explicit information about the geometry of the feature space is
usually desirable, if not necessary, for reliable processing and image analysis.

The responses of difference-based filter functions on image data, are
known to be Weibull distributed [16, 2, 49]. As such, every filtered image
may be represented as a single, unique point on a statistical manifold. We
exploit this fact and carry out the analysis in the 2-dimensional Weibull man-
ifold, which is much simpler than the original feature space. The 2D, smooth
Weibull manifold has well known properties that have been examined in sta-
tistical literature, but this is the first time its geometry has been applied to
the area of image processing and analysis. In this new lower-dimensional rep-
resentation, one may easily make use of the established notions of distance,
arc-length, curvature and mean, in order to perform basic image analysis
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tasks in a more principled and efficient manner.
We have devised a modular framework (see Fig. 1) that casts the im-

age processing and analysis tasks as an implicitly-constrained optimisation
problem, where we exploit the known manifold geometry to drive the opti-
misation algorithm to a good solution. For the purpose of feature extraction,
we will be using simple line and edge filters in the form of the dihedral fil-
ters originally proposed by [27]. These filters, constructed with the aid of
representation theory of discrete groups, are both fast and simple and allow
for very efficient implementation for parallel execution. Their application in
tasks such as content-based image retrieval and classification of high-level
scene concepts has been described in a previous publication [49]. We demon-
strate the efficacy of our framework and in particular the advantage of the
Weibull manifold solution over standard methods, in the well known problem
of automatic image focusing.

This paper is organised as follows. In Section 2 we describe in more
detail the individual components of our framework. We then continue onto
Section 3 with a brief introduction to automatic image focusing and include
some of the common approaches from literature. In the same section, we
describe how our proposed framework may be applied to the solution of the
autofocusing problem. Section 4 follows with a description of the comparative
experiments run and a description of the datasets used, as well as an analysis
of the results. We conclude in Section 6.

2. Basic framework

The image processing framework we are introducing in this paper consists
of a number of individual components that work together in a loop. First
is the image acquisition component. This is the module which captures the
image to be processed and makes them available to the rest of the system.
This could be as simple as a look-up table of a stack of images or some inter-
face to an imaging device. In general, the rest of the system does not have
an explicit model of the imaging process, the contents of and the conditions
in the imaged scene. However, modification of some parameters or physical
properties of the acquisition system is carried out and is controlled by the
rest of the framework.

The next step, is the filtering component. This component isolates im-
portant characteristic features from the image, such as edges or corners and
generates a new representation of the image data in this new feature space.
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The output of the filtering stage is a vector of magnitudes of filter responses,
which is known to be Weibull distributed. The natural next step therefore is
to fit a Weibull distribution to the data and describe the filtered image with
just two numbers, the Weibull scale and shape. Note that this is of course a
global application of the filters to the whole image. One may subdivide the
image in patches and apply the filters at each patch. The per-patch filtered
results are still Weibull distributed, but now they capture the local image
properties instead.

Every such scale-shape pair may be considered as a point on the 2D
Weibull manifold, and the manifold can be given a Riemannian metric, by
the Fisher matrix, at every such point. Abstraction of images as manifold
coordinates, allows us to turn the image processing task into equivalent op-
erations on points such as curve fitting or optimisation. Using this line of
thought, the next component is a cost function defined on the manifold,
which should obtain an appropriate minimum related to the image process-
ing task at hand. We may recover such a minimum using a manifold-based
optimisation algorithm.

The image acquisition modification parameters are adjusted, driven by
the optimisation component and the main loop (Fig. 1) is repeated until
convergence to a good solution. The main framework components are de-
scribed in more detail in the rest of this section.

2.1. Image filtering with dihedral filters

In the proposed processing scheme we characterize the visual properties of
images with the help of low-level filter systems. We use the so-called dihedral
filter systems that meet the requirements of both, fast execution times and
simplicity. These filters are constructed with the help of the representation
theory of discrete groups, which is a generalization of the theory of the dis-
crete Fourier transform. Their usage is based on three observations: almost
all digital images consist of pixels located on a square or hexagonal grid; The
transformations that map these grids into themselves are the so-called dihe-
dral groups; The filter functions should be adapted to these transformations.
In this paper we will use filters defined on a 5× 5 window and on grayscale
images. The filters are constructed as follows. First we define two positions
in the window as equivalent if there is a group element in the dihedral group
(i.e. a rotation or a reflection) that maps one point into the other. As a
result we get the six equivalence classes c1, c2, a1, a2, i and o shown in the
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matrix 
c1 i a1 i c1

i c2 a2 c2 i
a1 a2 o a2 a1

i c2 a2 c2 i
c1 i a1 i c1

 (1)

The value at the origin o will be ignored. For the remaining 24 points we
use the tools from the representation theory of the dihedral groups to divide
them into six subsets of 4 points each. The first four subsets are the points in
the equivalence classes c1, c2, a1, a2. The other two contain the points in the
class i. From the general theory it follows that for each of these quadruples
of points there are two linear combinations gx, gy which transform like the
traditional 2× 2 edge detectors. For the four points (a, b, c, d) defined by the
corners c1 or c2 we get the following

ci =

(
a b
c d

)
(2)

and gx = (a + c) − (b + d), gy = (a + b) − (c + d). We combine them to
obtain the magnitude value given by the squared norm ‖e‖2 = g2

x + g2
y which

corresponds to the output of a simple edge detector on the 2 × 2 pixels.
A similar construction is used for all quadruples resulting in a vector E =
(e2

1, . . . , e
2
6) containing all magnitude values from the six quadruples. Finally

we compute the euclidean length ‖E‖ of the vector and use this as a measure
of the “edge-strength” of the pixel distribution in this 5 × 5window. The
important properties of this construction is that the value ‖E‖ does not
change when the underlying 5×5 pixel pattern undergoes one of the dihedral
transformations (rotation and reflection) and that there are an equal number
of +1 and −1 coefficients involved in the filtering.

These filters used here represent one special type of edge detectors and
in the framework of the representation theory, they transform like the two-
dimensional representation of the group. For a detailed description of the
group theoretical filter systems we refer the interested reader to the refer-
ences [27, 28, 31]. The choice for using the dihedral filters was dictated by
their simplicity of representation, their execution speed and their ease of
parallelisation. In principle, it is possible to utilise other “edge-type” fil-
ters instead, which are similarly based on the calculation of pixel differences.
This is because such types of filters naturally lead to the same distribution
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families (Weibull, discussed next) that are fundamental to our framework,
meaning that we do not need to make any alterations to the rest of the
framework when switching to a different filter function. Notable choices with
a Weibull connection are the Gaussian-based derivative filters [16], and the
Gabor filters ([3] and see Fig. 2(a)), and possibly many others.

2.2. The Weibull distribution

The Weibull distribution is a member of the family of extreme value
distributions, and arises as a natural limiting distribution of the extrema
in a random sample with size n→∞ [21]. The probability density function
(pdf) of a Weibull random variable x is defined as

p(x|µ, σ, k) =
k

σ

(
x− µ
σ

)k−1

exp

[
−
(
x− µ
σ

)k]
, (3)

for x≥µ, µ∈R, k,σ∈R+ and where θ=(µ,σ,k) are the location, scale and
shape parameters of the distribution respectively. For µ=0, we obtain the
2-parameter Weibull distribution.

The Weibull distribution has a large domain of applications and has been
traditionally used in survival analysis, reliability engineering, extreme event
modeling, and material sciences. Quite recently [18, 16] have established a
link between the Weibull distribution and difference filters on images. In
[18] the authors suggested the connection to extreme value theory [21], via
the properties of sums of correlated variables [2], whereas [16] follows the
alternative path of fragmentation theory [7]. We have also subsequently
exploited these ideas and presented a connection between the dihedral filters
from Section 2.1 and extreme value theory in [49]. More specifically, for
dihedral filter systems whose kernels consist of an identical number of +1
and -1 coefficients, we have found that the statistical distribution of their
norm ‖E‖ follows the Weibull model, for a vast class of natural images.

2.3. Basic properties and fitting

The Weibull distribution is quite versatile in that, for different parameter
values it can obtain the form of other commonly known distributions. For
example, when k=1 its mode vanishes and becomes the exponential distri-
bution, and for k=2, we obtain the Rayleigh distribution (see Fig. 2 (a)). In
addition, the Weibull pdf is roughly symmetrical for k near 3.6, when k<3.6
the distribution is left-skewed, and right-skewed otherwise (See Fig. 2 (b)).
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(a) (b)

Figure 2: The Weibull distribution can take forms of other common distributions. Here
the exponential and Rayleigh models (a). The skewness of the Weibull distribution is a
function of its shape parameter k only (b).

The maximum likelihood estimation (MLE) of the Weibull distribution

θ̂ = argmin
θ

∑
i

ln p(xi|θ) (4)

from a data sample x, generally involves solving a numerical optimisation
problem, since there are no closed-form solutions for the estimates of its 3
parameters. In this paper, we provide a standard steepest-descent fitting
scheme for estimating the Weibull parameters from a data sample. However,
for the interested reader we suggest the book by [38], which offers an extensive
discussion on more advanced iterative schemes and effective initial estimates
for θ.

Therefore, given the Weibull log-likelihood function

L(x|θ) = n (log k − k log σ) + (k − 1)
∑
i

log (xi − µ)−
∑
i

(
xi − µ
σ

)k
, (5)

with n being the size of the data sample x, and a current estimate of the
Weibull parameters θ̂t, we may obtain the next-best estimate as θ̂t+1=θ̂t-
λ∇θL(x|θ̂t), where λ>0 is the step size parameter. The gradient components
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of the log-likelihood ∇θL(x|θ̂t) are given by:

∂L(x|θ)
∂µ

= −(k − 1)
∑

i
1

xi−µ + k
σ

∑
i

(
xi−µ
σ

)k−1
,

∂L(x|θ)
∂σ

= k
σ

[
−n+

∑
i

(
xi−µ
σ

)k]
,

∂L(x|θ)
∂k

= n
k
− n log σ +

∑
i log(xi − µ)−

∑
i

(
xi−µ
σ

)k
log
(
xi−µ
σ

)
.

(6)

In this work we restrict ourselves to the 2-parameter Weibull distribution,
since it has a simpler form and various analytic properties of its manifold are
known. We still fit the 3-parameter model p(x|µ, σ, k) as explained above,
but we work with the 2-parameter equivalent p(x|σ, k)≈p(x|0, σ, k). This has
the same effect as fitting the 2-parameter model to the normalised sample
x− µ, and as a result no additional fitting is required. Since in practice the
parameter µ accounts for very little variation in the data, we can work on
the simple 2-parameter Weibull instead, without much loss of generality.

2.4. The Weibull statistical manifold

A set of probability densities can, under certain smoothness conditions,
be equipped with a metric that makes them into a Riemannian manifold.
A Riemannian manifold may be thought of as a geometrical object that
locally looks like a flat Euclidean space. This means that at every point on
the manifold we have a tangent space and on this tangent space a positive
definite matrix defining distances and angles between elements on the tangent
space. If these matrices vary smoothly along the manifold then they define
a Riemannian metric on that manifold. In the case where the points on the
manifold are given by probability distributions these manifolds are known
as statistical manifolds. Statistical manifolds allow for differential geometry
tools to be applied to information theoretic and statistical problems. The
study of such statistical manifolds has led to the development of information
geometry [1] as a novel research field.

From information geometry, one can show [15, 37] that the Fisher infor-
mation

gi,j = E

(
∂2L(x|θ)
∂θi∂θj

)
, (7)

induces a Riemannian metric on the parameter space of the distribution
family p(θ), using for coordinates the parameters θ. For the particular case
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of the 2-parameter Weibull distribution, the Fisher information matrix is
given by

gi,j =

[
σ2

k2
ξ−1
k

ξ−1
k

ξ2−2ξ+π2/6+1
σ2

]
, (8)

where ξ= lim
n→∞

(∑n
k=1

1
k
− ln(n)

)
is the Euler-Mascheroni constant.

A large range of image processes, such as automatic focusing and colour
mapping, when examined through our framework, will produce point se-
quences (along some implicit curves), lying on the Weibull manifold. There,
we can analyse and characterise these processes using information geometric
tools and the specific properties of the manifold. Working on this manifold,
is significantly more convenient than some arbitrary-dimensional discretised
histogram space that is produced from the filtered image data. Additional
properties of the Weibull 2-manifold are presented in detail in [34, 9].

2.5. The cost function

Every image that has been processed by the filtering and Weibull fitting
steps of our framework, will generate one point on the manifold, which en-
capsulates the statistical properties of that filtered image. The next step is
to assign some type of “quality” to these points, that in a way represents the
suitability of the extracted features in relation to the problem which we wish
to solve.

This is achieved with the introduction of a cost function F , defined on
the Weibull manifold. One is free to construct a wide array of cost functions
that incorporate some knowledge about the problem at hand, but as long as
they are expressed in the Weibull coordinate system (σ, k), we can use the
same basic methodology in every case to obtain the best solution.

Since we are exploring the problem of automatic image focusing in this
paper, we suggest two different cost functions, which are suited for but not
necessarily restricted to, this particular problem. The first, and simplest cost
function, is the variance of the Weibull distribution [14], and is defined as

Fv(σ, k) = σ2

[
Γ

(
k + 2

k

)
− Γ2

(
k + 1

k

)]
, (9)

with Γ being the gamma function. The Weibull variance is a smooth, scalar
valued function which increases quadratically in σ, while decreasing as a
power-law in k. It behaves much in the same way as the sample variance,
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describing the frequency content of a signal. Variance-type cost functions
are widely used in autofocus research due to their connection with Fourier
optics [19]. There, the imaging system is modelled as a linear system that can
be characterised by its point spread function. One can show that increased
focus results in an increased high-frequency content in the image. As such, on
average, the difference between neighbouring pixels will increase and so will
the pixel sample variance. In addition, the variance will attain a maximum
value at the best focused image of the sequence.

An alternative cost function, is the arctangent of the principal eigen-
vector of the Fisher information matrix gij

Fa(σ, k) = arctan

(
V21

V11

)
, (10)

where V[2×2] is the symmetric eigen-vector matrix of gij. (10) can be rewritten
in closed form as

Fa(σ, k) = arctan

(
−6k4 + σ2γ −

√
ω

−12(ξ − 1)σk2

)
, (11)

where
γ = 6(ξ − 1)2 + π2 and
ω = −24π2σ2k4 + (σ2γ + 6k4)2.

(12)

Fa has similar properties to Fv but it is smoother. It is based on the idea
that during autofocusing, most of the data variance is explained by σ2, so
an optimum path is one of increasing σ. When at maximum focus, there is
very little variance left to be explained by σ, so the principal eigen-vector
will align with the k-coordinate axis, meaning that min(Fa(σ, k)) = π/2.

Both of these cost functions will be evaluated in a number of focusing
experiments and compared against other standard cost functions. They are
illustrated in Fig. 3.

2.6. The optimisation method

We are restricting ourselves to image processing tasks where only a single
parameter is modified. This is because such processes will define an implicit
curve on the manifold, meaning a pre-defined search orientation along the
curve. Here we present a basic approach for solving these very specific types
of optimisation problems defined on manifolds. Note that for the remainder
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(a) Weibull variance (b) Eigen-vector arctangent

Figure 3: An illustration of the two proposed (normalised) cost functions defined on (σ,k).
We see that both attain attain a maximum on the same region but their shape (i.e. rate
of increase) differs.

of this paper we shall consider the optimisation problem in terms of minimi-
sation.

Therefore, given a modification parameter t defined in some arbitrary
interval, and some non-trivial mapping m : R → R2 from the domain of t
onto an implicit curve xt on the Weibull manifold, we seek to minimise the
expression

argmin
t

F (m(t)) = argmin
t

F (xt) = argmin
t

F (σ(t), k(t)), (13)

where F is some cost function defined on the Weibull coordinate system.
The mapping m includes the image generation, dihedral filtering and Weibull
fitting steps and maps each image onto a point on the manifold (see Fig.4).
Thus for a time sequence of t values, we obtain a sequence of manifold points
that determine an implicit curve.

As (13) suggests, our approach will be to work exclusively on the manifold
and constrained to lie on the curve, without explicit knowledge of the curve
or the mappings involved. In short, we deal with an implicitly constrained
optimisation problem on a manifold.

We propose an iterative estimate-update stepping solution, where given
an existing sample xt we estimate the next point x̂t+1 on the curve and map
back onto the modification space to obtain t+1. We then generate the actual
sample xt+1, update our observations and proceed with the optimisation until
convergence. We do not employ an explicit correction step between x̂t+1 and
xt+1, although such a functionality can be introduced if desired.
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Figure 4: The mapping m and its inverse m−1 from the image (or modification) space to
the manifold. m is explicit and involves the image generation, the filtering and Weibull
fitting steps and in general does not have a tractable closed form. The inverse mapping
from the manifold to the image space is implicit and usually a surjection.

Euclidean space

First we explore this problem in its simpler form, defined in the Euclidean
space. From standard numerical optimisation theory, given a smooth cost
function F (x), its gradient field ∇F (x) and a current evaluation xi of the
location of the solution, we can obtain the next best, first order, estimate of
the solution along the direction of the steepest descent as

x̂i+1 = xi − λi∇F (xi), (14)

where λi is some positive step-length. In the case where we are restricted to
lie on an implicit curve, then the orientation of the search is pre-determined
and (14) can be re-written as

x̂i+1 = xi + λiTi, (15)

where Ti represents the (normalised) tangent vector at the point xi. The
direction along Ti represents our best (first order) estimate of the form of the
curve beyond the point xi. In addition, Ti is numericaly approximated via
finite differences as Ti=

xi−xi−1

‖xi−xi−1‖ .
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Figure 5: The component vectors at each point (particle) along the curve, the interaction
of which determine the direction and acceleration step-length λ of the optimisation.

The step-length λi, is chosen using the very simple analogy of the planar
motion of a particle along a curve. At each location xi, we may define 3
vectors. The gradient vector ∇F (xi), Ti and its orthogonal complement
T⊥i = [−Ti(2), Ti(1)], using a right-hand orientation convention (see Fig.
5). We already have analytic expressions for F (xi) and ∇F (xi) and T⊥i is
easily calculated given Ti. We may further decompose ∇F (xi) into its two
components. The tangential part Ft = 〈−∇F (xi)|Ti〉, which is the scalar
projection of the gradient vector on the curve tangent, and the centipetal part
Fc =

〈
−∇F (xi)|T⊥i

〉
, which is the projection of the gradient vector along the

tangent normal. The interaction between Ft and Fc is what determines the
increase or decrease of the next step-length. In particular, we may formulate
the step-length as

λi = sgn(Fc)K

(
Ft
Fc

)
λi−1, (16)

where λi−1 is the step-length at the previous iteration, K(.) is some damping
kernel that maps from [−∞,∞] to [−1, 1] and sgn(Fc) is used to determine
the correct sign change for all possible configurations of T⊥i in space, relative
to the gradient field. For the damping kernel we chose the logistic function

K(x) =
2a

1 + exp(−2x)
− a, (17)
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Figure 6: Illustration of the damping kernel (logistic function) from (17) for different
values of the acceleration factor a.

where a ≥ 1 is some acceleration scaling factor (Fig. 6). This formulation
essentially supresses infinitely large increases in acceleration when Fc →0.

The behaviour of these acceleration components is easily understood if we
isolate the two extremal cases in Fig. 7. In the first case, when Fc →0 then
(16) reduces to λi = aλi−1 and the new step-length represents an acceleration
by a. Furthermore, since ∇F (xi) ‖ Ti, (15) becomes the standard gradient
descent in (14). In the second case, when the tangential component vanishes
Ft →0 then also λi →0, because we are approaching the point of equilibrium,
where the particle stops. This is also the stationary point where the cost
function is at a minimum along the curve.

The final component is the mapping from the cost function domain, where
the optimisation is carried out, onto the modification space of t. We chose
the simple inverse mapping

∆ti = λi where
ti+1 = ti + ∆ti,

(18)

which is sufficient and both ∆ti and λi will converge to 0 without any os-
cilations, provided that the initial step-length λ0 is not too large. The rate
of convergence depends on the difference in scale between the two quantities
and is adjusted by the acceleration scaling factor a in (17).

As a result, we present the main optimisation routine in Algorithm 1 in
Appendix B. We also include a Wolfe-type estimation step getWolfe() in
Algorithm 2, to avoid unnecessary step evaluations during overshoots (see
Fig. 8). For the termination conditions, we typically look at the number
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(a) Gradient descent (acceleration) (b) Equilibrium (termination)

Figure 7: The two extreme behaviours of the particle motion analogue. In (a) we have
the configuration of maximum acceleration which simplifies to the usual gradient descent
step. In (b) we get the configuration of the equilibrium where the cost function is at a
local minimum and the particle stops.

of maximum iterations iter, a tolerance on the decrease of the cost function
Ftol, a tolerance on the change of the modification parameter ∆ttol and the
distance between samples in the cost function space xtol.

Manifold

The algorithms that we have presented for the Euclidean space, have a
simple and natural extension to the Weibull manifold, since at each point xi,
both Ti and ∇F (xi) lie on the tangent space of xi. Thus the scalar products
in (16) are now defined in the same way as the dual maps Ft = −Tik∇Flglk
and Fc = −T⊥ik∇Flglk, and the orthogonal complement T⊥i now satisfies the
two equations

∑
ij TiT

⊥
j gij = 0 and ||T⊥i || = ||Ti||, giving:

T⊥(2) =
√

1/(1 + ρ2), T⊥(1) = −T⊥(2)ρ, (19)

with

ρ =
T (2)g(2, 2) + T (1)g(2, 1)

T (1)g(1, 1) + T (2)g(1, 2)
. (20)

Finally, the xtol termination criterion in Algorithm 1 now changes from the
Euclidean distance to the Rao distance between two points (σ1, k1) and
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Figure 8: An illustration of a typical overshoot with a reduction of the cost function
F (x3) < F (x2). Notice that due to the numerical approximation of the tangent vector at
x3, the step-length has a positive value (acceleration).

(σ2, k2) on the Weibull manifold, and which was given by [34] as

s = 2b tanh−1

(
[log(σ2/σ1)− a(k2 − k1)/(k2k1)]2 + b2(k2 − k1)/(k2

2k
2
1)

[log(σ2/σ1)− a(k2 − k1)/(k2k1)]2 + b2(k2 + k1)/(k2
2k

2
1)

)1/2

,

(21)
where b = π/

√
6 and a = 1− ξ.

3. Application to autofocusing

In the previous sections, we have presented all the individual components
of our framework. In the next few sections, we will investigate the applica-
tion of the complete framework to the solution of a typical image processing
problem, and that is automatic image focusing. Automatic image focusing,
or autofocusing is a interesting problem to explore since it belongs to the
family of single-parameter image processing tasks, the modification of the
parameter is done in some arbitrary (lens) space outside the image domain,
and also additional image samples are very expensive, which makes for a
good test case for our optimisation approach. Finally, this problem has been
explored by various authors in the past and so comparative baseline methods
are available for further evaluation.
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3.1. Review of passive image autofocus
Passive autofocus systems, determine the correct image focus by analysing

the data that enters the optical device. Such methods are usually based on
the calculation of a “sharpness function” (SF), which is a real-valued estimate
of the image focus. Commonly used sharpness functions in literature have
been based on image derivatives [45, 6, 32, 12, 47, 40], statistics [13, 20, 46,
35, 39] and Fourier transforms [24, 44].

The most desirable property that an ideal SF should possess, is that of
unimodality. In other words, for a through focus series of images (i.e. images
sampled between the closest and furthest possible focal points) the SF must
obtain a unique global optimum at the position of best focus. Beyond this
basic behaviour, there are no widely agreed requirements for an SF. In [20],
the authors proposed a set of criteria that a useful SF should fulfill. From
those we note the two most important, accuracy : the global optimum must
be present when the image is in focus, and range: the range over which an
in-focus image can be obtained must be as large as possible. This means that
the SF around the global optimum must have a wide basin of attraction so
that any numerical optimisation algorithm has a good chance of locating the
point of best focus. The same authors also mention reproducibility, that is,
the existence of a sharp peak at the global optimum as a desirable property.
However, we argue that this might not always be advantageous, especially if
we employ a gradient-based numerical optimisation method, or if we wish to
model the region around the optimum with a low degree polynomial model
(e.g. quadratic).

Besides the type of SF used, passive autofocusing methods may be cate-
gorised based on their strategy for locating the global optimum (focus point).
The simplest strategy [4], involves capturing a small number of images at
some distance apart, thereby coarsely sampling the SF. This process is re-
peated at finer scales, around the location of the current optimum, until
convergence. More advanced methods, such as [23, 25], start by evaluating
the SF at a random focus position. The camera lens is moved around the
current position and additional SF samples are computed. The focus search
continues along the lens direction of improving sharpness with preferrably an
adaptive step-length.

These methods sample the SF directly and as a result they can be quite
slow and expensive, since they typically require a large number of images
to be captured. For faster autofocusing, other strategies have been proposed
where they try to model the SF based on a limited number of coarse samples.
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Chen et al. [10] use a second order discrete difference equation prediction
model and [43, 17, 41] use a second order polynomial model.

Even more recently, novel methods have been introduced, which are
trained on specific objects, lens positions and imaging conditions, and which
can recover the optimal focus very fast and efficiently, by means of matching
and a lookup table query. Most notable are those by [11] and [22]. The
obvious drawback, is that these approaches are highly specific to the device
used, the object of interest and the imaging conditions, and as such, do not
scale very well as the number of possible objects increases.

3.2. Weibull for image autofocus

Our framework may be used on the autofocusing problem by direct appli-
cation of the Algorithms 1 and 2, together with either of the cost functions
presented in Section 2.5. Furthermore, in this particular case, the modifica-
tion parameter t represents the lens position which has been mapped into
the interval [0, 1]. For illustration purposes, we examine a synthetic focus
sequence of a real image that has been convolved with a Gaussian kernel
of increasing width. The implicit curve that is generated onto the manifold
is shown in Fig. 9 (a) together with the contour plot of the cost function
from (9). The path traced by the curve on the cost function determines the
one-dimensional SF F (σ(t), k(t)) in Fig. 9 (b). Observe how this SF behaves
much in the same way as common SFs from literature. We stress once again
that although we seek a minimum for F (σ(t), k(t)), we are in fact carrying
out the optimisation in the 2-dimensional manifold curve in Fig. 9 (a) where
the derivatives of F are well defined, unlike the unknown derivatives of F
w.r.t t in Fig. 9 (b), that require costly numerical approximations.

Also notice in Fig. 9 (b) that for regular sampling in the lens parameter
space t, we get irregular samples in the SF domain. This is more apparent
near the narrow region around the minimum where the SF drops significantly,
but otherwise is almost flat. The same behaviour occurs also in the 2d curve
in Fig. 9 (a).

The basic interpretation of this is that when the images are blurred they
all look very similar and one has to take very large lens steps to move away
from the “blurred region” of the focus space. This is why the tail(s) of the
SF typically look flat. The danger here is that for a fixed lens step λ the
optimisation might terminate if no significant progress is made.

On the opposite side, when we start to obtain focused images, then each
subsequent focused image will look considerably different from its predeces-
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(a) 2d curve on manifold (b) Induced sharpness function

(c) Arc-length as a function of lens parameter

Figure 9: Illustration of the typical behaviour of a (synthetic) focus sequence.

sor. The SF will change dramatically, which explains the sharp drop. In the
“focused region” (i.e. near the basin of the SF) a fixed lens step will lead to
an ever-decreasing SF value until the minimum is obtained. The risk here of
course is that we might overshoot a very narrow basin.

We may understand this behaviour further if we examine the squared arc
length elemenent in Fig. 9 (c), which is given by

ds2 =
k2

σ2
dσ2 +

2(ξ − 1)

σ
dσdk +

ξ2 − 2ξ + π2/6 + 1

k2
dk2, (22)

at an infinitesimally small region of the manifold around each position t.
Where ds2 is large, i.e. in the blurred region, neighbouring points on the
manifold are far apart and for a fixed, small step-length we may not move
very much on the manifold. The SF might thus appear flat and one would
need to take larger steps λ in order to make progress. On the contrary, where
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ds2 is small, i.e. on the focused region, neighbouring points on the manifold
are very close together and so the same λ might produce a very large manifold
step. One would therefore need to take smaller steps to avoid missing the
solution.

We emphasise here that regular t sampling versus irregular SF responses
is not an effect of the manifold, since it occurs for all SFs (see for example
the Tenenbaum gradient and sample variance in Fig. 9 (b)). All the pictured
SFs have a similar monotonic decrease. However, we argue that ours is the
only method that by using additional information from the geometry of the
manifold, can provide a way of designing optimisation algorithms that can
adaptively adjust λ depending on where in the focus space we are.

4. Experiments

In this section, we present the results from the experiments we have car-
ried out in order to evaluate our framework in autofocusing and compare it
against common baseline methods. The main purpose of these experiments
is not to determine if our method outperforms every other method in litera-
ture, but to simply establish if the framework can be applied to and provide
a reasonable solution in terms of speed and accuracy, for the problem of aut-
ofocusing. This is why we compare against more commonly used, baseline
methods rather than against methods from consumer electronics literature
[22], which are heavily tuned to the type of hardware used and the objects
imaged.

4.1. Setup, datasets and proposed experiments

First are the off-line experiments, where we used 8 focus sequences, 6 of
them captured with an inexpensive consumer camera1 and 2 captured with
an optical microscope. All the images are single-channel grayscale. For the
6 camera sequences, we captured between 200-300 frames per sequence, at
a maximum resolution of 3264×2448 pixels, by varying the position of the
camera lens between its minimum and maximum settings, thereby sampling
the full range of focal plane positions at regular intervals. The 2 microscopy
sequences contain 34 frames each, at a resolution of 696×520 pixels, and
have been selected from the dataset in [5]. All the images in the 8 sequences

1Canon IXY DIGITAL 20 IS
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Figure 10: The in-focus frames from the 8 sequences used in our off-line experiments
together with their normalised Weibull variance SFs.

were stored on disk, with the lens positions mapped between the range [0,1]
and made available to all optimisation algorithms in a look-up table fashion,
thereby simulating the real camera lens control. The in-focus frames for all
the 8 sequences together with their corresponding Weibull variance SFs are
shown in Fig. 10.

The off-line experiments are partitioned into two sets. First, we wish
to evaluate the performance of the proposed optimisation scheme on the
2-manifold against standard (baseline) 1-dimensional optimisation schemes;
Second, we wish to compare the complete solution (Weibull sharpness func-
tion and manifold optimisation) against common autofocusing schemes.
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Figure 11: The in-focus frames from the 4 sequences used in our on-line experiments
together with their normalised Weibull arctangent SFs. Note also the rectangle in the
centre of each image, which indicates the region inside which the SF was calculated.

For the first set, it was necessary to have the same SF across all opti-
misation methods in order to evaluate the performance of the optimisation
solution alone. Since it also had to be one SF that was comparible with our
method, we opted for the Weibull variance. All optimisation methods modify
the lens parameter t and for each value at t, calculate an SF value from (9).
As such, we have performed 1000 tests for each sequence, where in order to
keep the experiments as fair as possible, we used the same lens starting posi-
tion t0 and the initial step-length ∆t0 across all tested optimisation methods,
at every test run. In addition, to evaluate the sensitivity on starting position
and initial step-length, we sampled uniformly at random t0∼U(0.2, 0.5) and
∆t0∼U(0.1, 0.5) for each test. For the second set, which is the evaluation
of the complete autofocus schemes, we compared our method (using both
cost functions from Section 2.5) against the methods described in the next
sub-section. We have also carried out 1000 test runs for each sequence, while
varying t0 and ∆t0 at each test run.

In addition, we have also carried out a small set of on-line autofocusing
experiments using a Canon EOS 50D camera. The camera was connected
to a computer via a USB cable and the lens focus motor was controlled
using the Digital EOS SDK (EDSDK 2.8 API) [8]. Images were captured
in a real-time, on-line fashion at specified lens positions. The rest of the
framework and interface remained unchanged and identical to the off-line
experiments previously. The on-line setup allows for examining our method
in more realistic and uncontrolled lighting and noise conditions. In other
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words, a scene imaged multiple times at the same lens position, might result
in slightly different sharpness values each time, due to the stochastic noise
process in the camera and the minute variations in the global illumination
properties. One advantage with having a computer-controlled camera setup,
is that we can obtain a ground truth (g.t.) focused frame using the camera’s
autofocus functionality. This allowed us to obtain more accurate estimates of
the sharpness relative to the g.t., for all compared methods. In addition, the
exact lens position could be read out directly from the camera, giving more
precise measurements of frame distance from the g.t. As such, we imaged
4 different objects (see Fig. 11) with a 85mm lens, at fixed aperture and
shutter speed. Each experiment was repeated 10 times and we computed the
Weibull arctangent SF as described in (11), over a 200×200 pixel rectangular
region, around the center of each image. As we have already mentioned in
section 2.5, the Weibull arctangent SF, is in general smoother and wider than
the Weibull variance SF we examined in the first set of experiments. This
can be seen clearly in the plots in the second row of Fig. 11.

Performance was evaluated in all cases (on-line and off-line experiments),
in terms of speed and accuracy. We used 4 different but complementary
measures. These are:

i)(NFEs): the number of function evaluations, or equally the number of
captured images until convergence. Note that the same termination toler-
ances have been used for all methods. The NFEs is the most important factor
that determines optimisation speed, since the majority of the time used is
spent in image acquisition, especially for microscopy. Obviously, the lower
the NFEs is, the faster the method is.

ii)(Fmin): the minimum normalised SF value achieved at convergence.
This is an accuracy measure and only makes sense when the same SF is used
across all optimisation schemes, and so we only used it for the first set of off-
line and the on-line experiments. The normalisation was done for illustration
purposes and for comparing accuracies across sequences. Thus, although we
minimise the negative SF, in the figures that follow, Fmin varies between [0,1]
and the higher it is, the more accurate the optimisation method is.

iii)(Tval): the distance (in image frames) from the ground truth, focused
frame. This is an additional measure of accuracy, and it is especially useful
in situations where different SFs are compared. In particular, it is often the
case that a specific SF graph is very wide around the global minimum. This
means that even though a recovered optimimum may be far from the ground
truth solution in terms of frames, in actual reality the SF difference between
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the two is very small. It would be useful to have an additional accuracy
measure that is able to differentiate between the two cases, especially in
order to give some contextual meaning to different SF values. The distance
measure we use here is defined as

Tval = |Tgt − Topt| · frames, (23)

where Tgt is the ground truth lens position and Topt is the recovered lens
position.

iv) (Nr): the total number of mechanical lens movements (steps) required
to converge to the optimum. This measure is used to differentiate between
methods that might converge to a minimum within the same NFEs but have
different strategies on how to get there. Obviously, the lower the number
of motor steps, the faster the method is, and in order to have some way of
comparing between different sequences, we evaluate instead

Nr = |Nms − Ngt| . (24)

Nms is the total number of lens motor steps that the optimisation method
requires, and Ngt is the theoretical ground truth lens steps necessary if we
were to obtain a focused image with just a single function evaluation from
the current starting point. Nr has units of minimum lens step.

4.2. Autofocusing methods: SFs and optimisation schemes

Here we present a selection of 1-dimensional optimisation methods and
a number of commonly used SFs from autofocusing literature that together
define the set of baseline methods we used for comparative evaluation. In
terms of SFs, all of which obtain a global minimum at the focused image, we
looked at the image negative variance

Fvar(x, y, t) = − 1

N

∑
x

∑
y

(
I(x, y, t)− Ī(t)

)2
, (25)

where N is the number of pixels in the image I, and Ī(t) signifies the mean
image at lens parameter t. We also looked at the Shannon entropy

FE(t) = −
∑
i

pi(t) log2 pi(t), (26)
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where pi is the grayscale image histogram and the sum is over the histogram
bins. Finally we looked at another widely used SF, which is the Tenenbaum
gradient [45] and is defined as follows

FTB =
∑
x

∑
y

Sx(x, y, t)
2 + Sy(x, y, t)

2, (27)

where

Sx(t) = I(t) ∗

 1 2 1
0 0 0
−1 −2 −1

 and Sy(t) = I(t) ∗

 −1 0 1
−2 0 2
−1 0 1

 .

(28)
For the optimisation methods, we tested 5 different approaches. These

are: Boddeke’s method [4], the Golden Search (GS) [36], Nelder-Mead down-
hill simplex [33], the Global adaptive (GA) method [26] and finally the Hill
climbing (HC) method [42]. Due to economy of space we refer the inter-
ested reader to the respective publications for additional information on each
method, but it suffices to say that all of them work on the SF directly, with-
out calculating numerical derivatives. We also mention that we have not
tested the 15 possible combinations of SFs and optimisation methods, as
this would be rather uninformative and time consuming. Instead, we deter-
mined the best overall performing optimisation method from the first type
of experiments, and used that method with the 3 SFs in the second type of
experiments.

4.3. Results

We begin with the results from the off-line experiments. The first set of
experimental results, averaged over all the 8 datasets and over all the 1000
test runs, are shown in Fig. 12. From the Fmin accuracy plot (Fig. 12(a)), we
see that the Golden Search method is the most accurate and with a very low
variance. Our manifold optimisation method performs relatively well, with
a median of 0.9806, which is better than the 0.9389 of the commonly used
Boddeke’s method. Ours however has a larger variance, which might indicate
an increased sensitivity to starting values, something which is expected from
local gradient-descent methods. If we look at the average frame distance plot
(Fig. 12(b)), we observe a similar behaviour. The Golden Search is the most
accurate method with a median of 2.41, followed by the Simplex and Global
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Adaptive methods. Our method has a median of 8.7 frames from the ground
truth, which again is more accurate than Boddeke’s method.

In terms of speed, we observe a very different result. First, at the very
important NFEs measure (Fig. 12(c)), the Golden Search is the most ex-
pensive method with a median of 33.85 frames required for covergence, and
with the highest variance from all other optimisation methods. A similar be-
haviour is shown by the other highly-accurate methods such as the Simplex
and the Global Adaptive. Our method together with Boddeke’s are amongst
the fastest if we also consider the average number of motor steps (Fig. 12(d)).
Notice that in terms of motor steps our method is quite efficient without too
much of exploratory, overshooting or backtracking behaviour, unlike Bod-
deke’s. We may conclude by saying that the most accurate methods are also
the most expensive, and for a small increase in accuracy they pay a very large
penalty in captured image overhead. The Weibull optimisation method as
well as Boddeke’s exhibit the best compromise between speed and accuracy,
with ours being more efficient in terms of lens steps and much more accurate,
while only requiring one more image frame to converge, on average.

From the other competing methods, we note the Hill Climbing approach
which also produces very good accuracy scores, at a moderate expense. For
this reason, we have decided to use it as the optimisation component in the
baseline methods in the second set of the experiments.

The averaged results from the second set are shown in Fig. 13. In terms
of frame distance accuracy (Fig. 13(a)), the HC+V combination is the only
one that outperforms our solutions. Surprisingly the Tenenbaum gradient is
the least accurate solution. However, in terms of speed (Fig. 13(b,(c)) all
HC solutions are approximately twice as expensive as our approach with the
HC+V combination being the most time consuming. From our two variants,
the one using the Weibull arctangent in (11) is slightly more accurate and
faster than its Weibull variance counterpart. This result supports in some
respects our claim originally posed in Section 3 about the advantages of a
wide region near the optimum.

For the on-line experiments with the Canon EOS 50D, we can observe
a similar pattern with the previous results. In Fig. 14(a) we can see the
SF values for the 6 methods. Note here, that just like in Fig. 12(a) we
are quoting normalised SF accuracy, with a larger value indicated a more
accurate SF value recovered by the algorithm, relative to the ground truth.
The g.t. value, is obtained by the camera’s internal autofocus functionality.
However, unlike the off-line results, in this case due to the slight variations
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(a) Average SF value. (b) Average frame distance.

(c) Average NFEs. (d) Average motor steps.

Figure 12: Results from the first set of off-line experiments on optimisation methods with
the same SF (Weibull variance). Each box in every plot contains averaged information
from 8000 tests. The solid parts of the boxes show the data between the 25th and 75th
percentile and the middle line is the median value. The crosses indicate statistical outliers.
The labels on the abscissae are defined in Section 4.2.
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(a) Average frame distance. (b) Average NFEs.

(c) Average motor steps.

Figure 13: Results from the second set of off-line experiments on the complete approaches
(optimisation method and cost function). The labels on the graphs are: (WV): Manifold
optimisation with Weibull variance, (WA): Manifold optimisation with eigen-vector arct-
angent, (HC+E): Hill Climbing with image entropy, (HC+V): Hill Climbing with image
variance and (HC+T): Hill Climbing with Tenenbaum gradient.
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(a) Average SF value. (b) Average frame distance.

(c) Average NFEs. (d) Average motor steps.

Figure 14: Results from the on-line experiments on optimisation methods with the same
SF (Weibull arctangent). Each box in every plot contains averaged information from
the different tests. The solid parts of the boxes show the data between the 25th and 75th
percentile and the middle line is the median value. The crosses indicate statistical outliers.
The labels on the abscissae are defined in Section 4.2.
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in the imaging conditions between different test runs, there are small fluctu-
ations in the SF values. Therefore, it is possible to obtain an SF value that
is smaller than the ground truth and as a result normalised SF values that
exceed 1 in Fig. 14(a). What we can see from this plot is that our method is
very accurate, with no outliers and with low variance, a behaviour which is
more of characteristic of global optimisation (and hence accurate) methods.
For the average frame distance from the g.t. (Fig. 14(b)), which is an addi-
tional measure of accuracy, we see that our method is performing very well
on average, just behind the global Hill Climbing method. Compare this with
the performance in the off-line experiments (12(b)), where both our method
and Boddeke’s where less accurate than all the global methods.

In terms of speed, the results in Fig. 12(c) and (d) are much in line
with what we have already seen in Fig. 12(c) and (d). Our method together
with Boddeke’s and the Hill Climbing methods, require the fewer number of
acquired images (NFEs). For the average number of motor steps relative to
the g.t., we see that in this case our method falls slightly behind Boddeke’s
but still faster than the global optimisation approaches.

In summary we can say that our method offers a very good trade-off
between speed and accuracy. We have seen some performance variations be-
tween the off-line and on-line realistic experiments, which are to be expected
due to the different SFs examined with different characteristics (Weibull vari-
ance vs arctangent). What is important to note is that the good overall
performance of our method generalises well across the different experimental
setups and the different SFs used. These results, provide considerable sup-
port to our hypothesis that the Weibull framework can be applied to and
provide a fast and accurate solution to the problem of autofocusing, in line
with existing methods in literature.

5. Other applications

The autofocus application described so far is only one example where we
can manipulate a single parameter (in this case the focus settings of the cam-
era) in order to minimise a cost function defined on a statistical manifold, and
thus solve a specific image processing problem. Another application where
our Weibull optimisation framework can be used, is in the combination of
multiple channels in an image, producing a scalar-valued image. Specifically,
we have looked into the task of weighted linear combinations of the RGB
channels in a colour image into a single channel intensity image, in order
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to enhance certain properties such as edge information or contrast in the
resulting image. This type of processing is particularly useful in subsequent
tasks such as object segmentation. In that respect, we have published two
papers [29, 30] using the same Weibull framework and optimisation method.
In more detail, we used the trace of the Fisher information matrix as the
objective function

Ft (σ, k) =
6 + 6(ξ − 2)ξ + π2 + 6k4/σ2

6k2
, (29)

and since instead of one we had to optimise over three parameters (RGB
weights), we carried out a single search in each parameter independently (co-
ordinate search scheme). Some results that show the efficacy of this method
over standard approaches, in terms of a grayscale mapping for image en-
hancement, are illustrated in Fig. 15.

An additional application of the Weibull framework in image processing,
is our ongoing work on tonemapping optimisation for dynamic range reduc-
tion in High Dynamic Range (HDR) images, to the 8-bit pixel values used
in most processing applications today. An appropriate Weibull-based cost
function, related to the gamma value of the image, is optimised using our
framework over regularly sampled, overlapping, local patches from the HDR
image and the mapped results are combined into the final output. We can
see some initial results in Fig. 16. Compared with standard techniques, the
Weibull optimised method gives visually more pleasing results, with a better
contrast response, while avoiding over-exposure.

One further potential application of the Weibull framework, is in the area
of saliency enhancement. The connection between the Weibull and image
saliency has been identified and used by [48]. A straightforward extension to
their work would be to cast saliency enhancement as optimisatoin, by tuning
the appropriate saliency response of the image using our Weibull framework.

The aforementioned examples, are just a few of the possible additional ap-
plications of the Weibull manifold and optimisation framework, and illustrate
that our proposed approach is not limited to the autofocus scenario presented
here, but may be used with little or no modification to a variety of different
image processing problems (discrete, continuous and multi-parameter).
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Original RGB images.

Weibull grayscale mapping.

Fixed grayscale mapping.

Figure 15: Example from [30], of RGB to grayscale mapping using the Weibull frame-
work. In the first row we have three examples of RGB images dominated by different
combinations of primary colours (GB, RG and RB). In the second row we can see the
results from the Weibull framework. Note how the grayscale mapping (RGB weights)
adapt to the image content, in order to improve the overall contrast. Such a mapping is
ideal for obtaining scalar images suitable for segmentation. Compare this with a standard
fixed mapping (0.298R+0.587G+0.114B) that is unable to separate the different colours
adequately.
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8-bit quantization Histogram tonemapping Weibull tonemapping

Figure 16: Tonemapping examples on HDR images. In the first column we see a basic,
fixed 8-bit quantization of the image. Note the overall poor contrast response. In the
second column we show a common method, which adapts to the image content using
histogram equalisation. Even though the contrast response has improved, the overall
image is over-exposed. In the third column we show the adaptive Weibull method that
uses our framework. We observe a much better contrast response that does not contain
any over-exposed regions.

6. Conclusion

In this work we have exploited the connection between pixel-difference
type of filter functions and the Weibull distribution, and devised a basic
framework for low-level processing and subsequent analysis of images. Any
image, once filtered can be represented as a point on the 2D Weibull man-
ifold. Since we know many of the basic properties of that manifold, such
as curvature, geodesic distances and its Riemannian metric, we can easily
and efficiently carry out tasks like optimisation, clustering, curve fitting and
extrapolation on the manifold. This undertaking would undoubtedly be very
difficult in the original feature space.

In order to demonstrate our proposed framework, we have looked at its
application to the image processing task of autofocusing. In that problem, we
modify the lens position while capturing new images, until the most focused
image is recovered. Such a modification scheme suggests that one may use
an optimisation approach to solve the problem. In fact, most of the existing
methods in literature are 1-dimensional minimisation schemes working on
an appropriate sharpness function. We have followed the same route, but
instead perform the optimisation on the 2D manifold, constrained to lie on
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an implicit curve. There we are free to define cost functions with known,
analytic derivatives and which can be used in a very efficient gradient-descent
minimisation algorithm.

We have compared our method against common baseline approaches from
literature, on different image sequences and across a number of different
evaluation measures. What we found is that our manifold method is one of
the best overall performers in terms of combined speed and accuracy. Both
of these measures are important for practical applications where we require
a well focused image but without capturing too many additional images. As
a result, we have established that the additional cost of fitting the Weibull
distribution to the filtered data, is more than compensated by the reduction
in the number of required images for convergence.

Further to the autofocusing scenario we have also presented some addi-
tional application areas where our framework can be used (e.g. RGB-to-
grayscale mapping, HDR tonemapping and saliency boosting), that demon-
strate the flexibility and usefulness of our proposed approach in a variety of
different image processing tasks.
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Appendix A. Cost function gradients

The gradient of the Weibull variance cost function in (9) is given by:

∇Fv =

 −2σ
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 , (A.1)

where ψ(m, z) = dm+1

dzm+1 ln Γ(z) is the polygamma function. The gradient of
the arctangent cost function in (11) is given by:

∇Fa =

(
6(ξ−1)k2(6k4+σ2χ)

ζ
−12(ξ−1)σk(6k4+σ2χ)

ζ

)
, (A.2)
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where ζ = 36k8 + 12σ2k4 (6(ξ − 1)2 − π2) + σ4χ2 and χ = 6(ξ − 1)2 + π2.

Appendix B. Optimisation algorithms

Algorithm 1 The main minimisation algorithm
Input: λ1,∆t1, t1, Output: ti, xi, F (xi)

{F (x1), x1} = getSample(t1)
i = 2
while !termination do

ti = ti−1 + ∆ti−1

{F (xi), xi} = getSample(ti)
if F (xi) > F (xi−1) then
{F (xt), xt} = getSample(ti−1 − ε)
if F (xt) < F (xi−1) then
{xi, λi, F (xi), ti} = getWolfe(xt, xi−2, λi, ti−1 − ε)

else
{xi, λi, F (xi), ti} = getWolfe(xi−1, xi, λi, ti−1)

end if
else

Calculate Ti, T
⊥
i , ∇F (xi), Fc and Ft

Calculate λi using (16)
Calculate ∆ti using (18)

end if
i = i+ 1
Check termination criteria

end while

Algorithm 2 getWolfe() function. Wolfe point correction algorithm
Input: x1, x2, λ1, t1, Output: xi, λi, F (xi), ti

λ1 = λ/4
i=2
while λi ≥ some threshold τ do

Calculate Ti = [x2 − x1], T⊥i , ∇F (x2), Fc and Ft

Calculate λi using (16)
Calculate ∆ti using (18)
ti+1 = ti + ∆ti
{F (xi+1), xi+1} = getSample(ti+1)
if F (xi+1) < F (xi) then

Return λi, ti+1, xi+1, F (xi+1)
else

λi = λi/4
end if
i = i+ 1

end while
Return λi, ti, xi, F (xi)
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