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Abstract: In this work, we introduce a Bayesian approach for pose-invariant recognition of the images of 3d objects
modelled by a small number of stored 2d intensity images taken from nearby but otherwise arbitrary view-
points. A linear combination of views approach is used to combine images from two viewpoints of a 3d object
and synthesise novel views of that object. Recognition is performed by matching a target, scene image to
such a synthesised, novel view using an optimisation algorithm, constrained by construction of Bayes prior
distributions on the linear combination. We have experimented with both a direct search and an evolutionary
optimisation method on a real-image, public database. The Bayes priors effectively regularised the posterior
distribution so that all algorithms were able to find good solutions close to the optimum. Further exploration
of the parameter space has been carried out using Markov-Chain Monte-Carlo sampling.

1 INTRODUCTION

The detection and subsequent categorisation of
three-dimensional objects has been one of the most
important and recurring problems in computer vision,
mainly due to the inherent difficulties in dealing with
objects that may be imaged from a variety of view-
points.

In this work, we shall examine a particular kind of
extrinsicvariation; that is, variation of the image due
to changes in the viewpoint from which the object can
be seen. Traditional approaches for solving this spe-
cific problem have relied on an explicit 3d model of
the object and the generation of 2d projections at var-
ious viewpoints, such as the work by (Lee and Ran-
ganath, 2003). Although such methods can accurately
model pose variations, generating a 3d model can be
a complex process and often requires the use of spe-
cialised hardware. Other methods (Lamdan et al.,
1988; Beymer, 1994) have tried to capture the view-
point variability by using multiple views of the object
from different directions covering a large portion of
the view-sphere. Since dense coverage is usually nec-
essary for accurate recognition results such methods

require capture, storage and manipulation of a vast
number of images of each object of interest, limiting
their practicality. In order to overcome these limita-
tions, alternative methods have been introduced that
try to work directly with a smaller number of images.
They are calledview-basedmethods and represent an
object as a collection of a small number of 2d views.
Their advantage is that they do not require construc-
tion of a 3d model while keeping the number of re-
quired stored views to a minimum. Examples include
the recent work by (Bebis et al., 2002) and (Li et al.,
2004).

We propose a similar method which works di-
rectly with pixel values and thus avoids the need for
low-level feature extraction and the solution of the
correspondence problem (Bebis et al., 2002). In ad-
dition, by employing a Bayesian approach, we can
use all the available prior knowledge about the linear
combination parameters and restrict our search to re-
gions where valid and meaningful solutions are likely
to exist. We adopt a “generate-and-test” strategy us-
ing an optimisation algorithm to recover a set of linear
combination of view (LCV) coefficients that will syn-
thesise a novel image which is as similar as possible to



the target image. If the similarity between the synthe-
sised and the target images is above some threshold
then an object is determined to be present in the scene
and its location and pose are defined (at least in part)
by the LCV coefficients.

In the next section, we introduce the theory behind
the LCV and explain how it can be used to synthesise
realistic images over a range of viewpoints. In sec-
tion 3, we present our extension of the LCV method
to incorporate prior probabilistic information and of-
fer one possible interpretation for the Bayesian prior
probabilities. Section 4 outlines the main components
of our proposed recognition system while section 5
presents some experimental results of our approach
on real imagery. Finally, we conclude in section 6
with a critical evaluation of our method and suggest
possible future work.

2 Linear combination of views

LCV is a technique which belongs in the general
theory of the tri- and multi-focal tensors, or Algebraic
Function of Views (AFoV) (Shashua, 1995) and pro-
vides a way of dealing with variations in an object’s
appearance due to viewpoint changes. This theory is
based on the observation that the geometry of the set
of possible images of an object undergoing 3d rigid
transformations and scaling may, under most imaging
conditions, to a good approximation, be embedded in
a linear space spanned by the landmark points of a
small number of images taken from different view-
points. Ullman and Basri (Ullman and Basri, 1991)
were the first to apply this theory to line drawings and
edge maps.

Thus, given two imagesI ′ andI ′′ of an object from
different (basis) views with corresponding image co-
ordinates(x′,y′) and (x′′,y′′), we can represent any
corresponding point(x,y) in a novel target imageIT
according to, for example:

x = a0 +a1x′ +a2y′ +a3x′′ +a4y′′

y = b0 +b1x′ +b2y′ +b3x′′ +b4y′′
. (1)

The target view is reconstructed from the above two
equations given a set of valid coefficient(ai ,b j). Pro-
vided we have at least 5 corresponding landmark
points in all three images(IT , I ′, I ′′) we can esti-
mate the coefficients(ai ,b j) by using a standard least
squares approach. Several others have taken this con-
cept further from its initial application to line images
and edge maps to the representation of real images
IT (Bebis et al., 2002; Koufakis and Buxton, 1998;
Hansard and Buxton, 2000; Peters and von der Mals-
burg, 2001).

(a) (b)

(c) (d)

Figure 1: Example of real data from the COIL-20 database.
The two basis view imagesI ′ (a) andI ′′ (b) with landmark
points selected at prominent features.IT (c) is the target
image. The synthesised imageIS (d) is at the correct pose
identified by our algorithm.

Such results suggest that it is possible to use LCV
for recognition by matching imagesIT of target views
of an object to a combination of stored, basis views of
the object. The main difficulty in applying this idea
within a pixel-based approach is the selection of the
LCV coefficients(ai ,b j).

2.1 Image synthesis

To synthesise a single, target image using LCV and
two views we first need to determine its geometry
from the landmark points. For pixel-based object
recognition in which we wish to avoid feature detec-
tion a direct solution is not possible, but we instead
use a powerful optimisation algorithm to search and
recover the LCV coefficients for the synthesis.

Given a set of hypothesised landmark points (see
Fig. 1(a),(b)) we can, to a good approximation, syn-
thesise an imageIS to match to the targetIT :

IT(x,y) = w′I ′(x′,y′)+w′′I ′′(x′′,y′′)+ ε(x,y)
= IS(x,y)+ ε(x,y). (2)

The weightsw′ andw′′ may be calculated from the
LCV coefficients and the imageIS synthesised as
described in (Koufakis and Buxton, 1998). Thus,
w′ = d′′2

d′2+d′′2
, w′′ = d′2

d′2+d′′2
with d′′2 = a2

3 + a2
4 + b2

3 +

b2
4 + a2

0 + b2
0 and d′2 = a2

1 + a2
2 + b2

1 + b2
2 + a2

0 + b2
0.

The synthesis essentially warps and blends imagesI ′

and I ′′ to produceIS. It is important to note there-
fore that (2) applies to all points (pixels)(x,y), (x′,y′)
and(x′′,y′′) in imagesIS, I ′ andI ′′ with the dense cor-
respondence defined by means of the LCV equations



(1) and a series of piecewise linear mappings (Gosh-
tasby, 1986; Koufakis and Buxton, 1998). If(x′,y′)
and(x′′,y′′) do not correspond precisely to pixel val-
ues, bilinear interpolation is used. The same idea may
be extended to colour images by treating each spectral
band as a luminance component (e.g.IR, IG, IB).

2.2 Coefficient variation

Since the pose information is implicitly encoded in
the 10 coefficients(ai ,b j), it is useful to investigate
their variation as the object is viewed from different
directions. We are particularly interested in viewing
directions on the portion of the view-sphere between
the two basis views. We thus devised a simple ex-
periment using a synthetic 3d model on which we
selected a number of landmarks on prominent fea-
tures and along edges. The model was placed over a
black background and then allowed to rotate between
±20o from the frontal position and 2d snapshots of
the scene were taken, under orthographic projection,
at 1o intervals. The two images at±20o were chosen
as the basis views. We then solved (1) at each view
and obtained a set of coefficients as a function of the
angleϑ as illustrated in Fig. 3(b).

As we can see, coefficienta0 follows a quadratic
curve, coefficientsa1 and a3 are linear and the re-
maining coefficients are constant. Note also thata1
and a3 have a range of[0,1] with a1,a3 ≈ 0.5 for
ϑ = 0o (frontal view). Additionally, at the same an-
gle, a0 is at a minimum. Finally, we observe that,
a2,a4,b0,b1,b3 ≈ 0 andb2,b4 ≈ 0.5 .

This information could be used to bound the pa-
rameter space in the optimisation or to approximate
regions within which we initialise our algorithm. Al-
ternatively, we can predict the solution set at eachϑ.
This information, combined with knowledge of the
range of poses we are likely to encounter in a spe-
cific experiment, may thus be used to construct the
Bayesian priors, as we shall see in section 3

We note here that the form of the coefficients
is largely independent of the actual object used and
therefore the results generalise to any generic ob-
ject under similar imaging conditions. One could
also carry out similar experiments with other 3d rigid
transformations and recover how the LCV coefficients
vary in such cases.

3 Bayesian model

In this section we propose an extension of the ba-
sic LCV equations (1) and (2) by incorporating prior
information on the coefficients(ai ,b j) and building a

Bayesian model. We start with (2) in whichε(x,y) is
assumed to be a vector of i.i.d. random noise. Given
the data (target imageIT ) and a model represented by
the basis viewsI ′ andI ′′, the posterior probability of
the LCV coefficients is:

P(ai ,b j |IT , I ′, I ′′) ∝
P(IT |ai ,b j , I ′, I ′′)P(ai ,b j).

(3)

P(IT |ai,b j , I ′, I ′′) is the probability of observing the
target imageIT given the coefficients(ai,b j) and the
basis viewsI ′ andI ′′. P(ai ,b j) is the prior probability
of the LCV coefficients.

If we then use the general assumption that the de-
viationsε of the synthesised imageIS from the target
imageIT are drawn from a Gaussian distribution the
log-likelihood of observing the target image may, up
to constant terms that we shall ignore, be written as:

− log[P(IT |ai ,b j , I ′, I ′′)] =
1

2σ2
ε

∑x,y[IT(x,y)− IS(x,y)]2,
(4)

which is quadratic in the residuals, and the summation
is over all image pixels. The other term on the right
in (3) comes from the prior p.d.f..

The prior represents general information about the
LCV parameters based on the analysis we have car-
ried out previously. We have used a Gaussian prior for
the coefficientsai andb j centered at the values identi-
fied in section 2.2. Under the assumption of statistical
independence of the coefficients with each having its
own mean and variance and, if we again ignore unin-
teresting constants we get:

− log(P(ai ,b j)) ∝
4

∑
i, j=0

[
(ai −µa)

2

σ2
i

+
(b j −µb)

2

σ2
j

],

(5)
whereµa, µb are the means andσi ,σ j the standard de-
viations of the prior probabilities for coefficientsai
andb j respectively.

From (3),(4) and and (5) we see that, if we con-
tinue to ignore uninteresting constants, the log poste-
rior probability becomes:

− log[P(ai ,b j |IT , I ′, I ′′)] ∝
∑x,y[IT (x,y)−IS(x,y)]2

σ2
ε

+ ∑4
i, j=0[

(ai−µa)
2

σ2
i

+
(b j−µb)

2

σ2
j

].

(6)
We usually require a single synthesised image to be
presented as the most probable result. A typical
choice for that single image is the one which max-
imises the posterior probability (MAP), or minimises
the negative log-posterior (6) with respect to the pa-
rametersai andb j . The latter can be minimised using
standard optimisation techniques.

As we can see from (6), the prior is used to bias
the MAP solution toward the meansµa andµb, away



from the maximum likelihood (ML) solution which is
where∑x,y[IT(x,y)− IS(x,y)]2 is at a minimum (i.e.
there is little difference betweenIT and IS). How
much the prior affects the solution in relation to the
likelihood depends on the ratio:

k =
σ2

ε

∑i, j(σ2
i + σ2

j )
. (7)

As the influence of the prior vanishes (i.e.σi , σ j be-
come very big and the Gaussian prior resembles a uni-
form distribution) the MAP solution approaches the
ML solution. Careful selection of the ratiok is there-
fore very important.

The effect of using such Gaussian priors to bias
the posterior can be seen in Fig. 3(a). Here we show
the negative log probability of the likelihood, prior
and posterior for the coefficienta2. This plot was gen-
erated by isolating and varying this coefficient while
having conditioned the remaining coefficients to the
optimal prior values identified previously. The im-
ageIS was synthesised using (2) and compared to the
target imageIT with the log probabilities recorded at
each value ofa2. We used images from the COIL-20
database (Nene et al., 1996).

What we should note in particular from this exam-
ple is the effect of the prior on the likelihood, espe-
cially near the tails of the p.d.f. where we have large
error residuals. The prior widens the basin of attrac-
tion of the likelihood resulting in a convex posterior
that is much easier to minimise even if we initialise
our optimisation algorithm far away from the optimal
solution.

On the other hand, near the global optimum we
wish the prior to have as little impact as possible in or-
der for the detailed information as to the value ofa2 to
come from the likelihood. This allows for small devi-
ations from the values for the coefficients encoded in
the prior means, since every synthesis and recognition
problem differs slightly, due to object type, location,
orientation and perspective camera effects.

4 The recognition system

In principle using the LCV for object recognition
is straightforward. All we have to do is select the ob-
ject and find the coefficients in an equation such as (1)
which will minimise the errorε from (2) and check
that it is small enough so that our synthesised and tar-
get imagesIS andIT are sufficiently similar to enable
us to say that they match.

4.1 Template matching

The first component of our system is the two stored
basis viewsI ′ and I ′′ which define the library of
known modelled objects. These are rectangular
bitmap images that contain grey-scale (or colour)
pixel information of the object without any additional
background data. It is important not to choose a very
wide angle between the basis views to avoidI ′ andI ′′

belonging to different aspects of the object with land-
mark points being occluded.

Having selected the two basis views, we pick a
number of corresponding landmark points, in par-
ticular lying on edges and other prominent fea-
tures. We then use constrained Delaunay triangula-
tion (Shewchuk, 2002) and the correspondence to pro-
duce similar triangulations on both the images. The
above processes may be carried out during an off-line,
model-building stage and are not examined here.

The set of LCV coefficients is then determined by
minimising the negative log posterior (6) and the ob-
ject of interest in the target imageIT recognised by
selecting the best of the models, as represented by the
basis views, that explainIT sufficiently well. Essen-
tially, we are proposing a flexible template matching
system, in which the template is allowed to deform in
the LCV space, restricted by the Bayesian priors to re-
gions where there is a high probability of meaningful
solutions, until it matches the target image.

4.2 Optimisation

To recover the LCV coefficients, we need to search a
high-dimensional parameter space using an efficient
optimisation algorithm. For this purpose, we have
chosen to examine two different methods, a global,
stochastic algorithm, and a local, direct-search ap-
proach. The stochastic method used is called Differ-
ential Evolution (DE) and was introduced by (Storn
and Price, 1997). Briefly, DE works by adding the
weighted difference between two randomly chosen
population vectors to a third vector, and the fitness
of the solution represented by the resultant is com-
pared with that of another individual from the current
population.

For the local method, we have selected the sim-
plex algorithm by (Nelder and Mead, 1965) since it
is very easy to implement and does not require cal-
culation (or approximation) of first or second order
derivatives. A simplex is a polytope of N+1 vertices
in N dimensions with each vertex corresponding to a
single matching function evaluation. In its basic form
the simplex is allowed to take a series of steps, the
most common of which is thereflectionof the vertex



Figure 2: Image samples from the COIL-20 database

having the poorest value of the objective function. It
may also change shape (expansionandcontraction)
to take larger steps when inside a valley or flat ar-
eas, or to squeeze through narrow cols. It can also
change direction (rotate) when no more improvement
can be made in a current path. Since the simplex is
a local, direct search method it can become stuck in
local optima and therefore some modifications of its
basic behaviour are necessary. We thus introduced the
reducing-step restartingsimplex (Zografos and Bux-
ton, 2007) which can make variable length “jumps”
in order to avoid local optima and burrow deeper into
the basin of attraction.

5 Experiments

We have performed a number of experiments on
real images using the publicly available COIL-20
database. This database contains examples of 20 ob-
jects imaged under varying pose (horizontal rotation
around the view-sphere at 5o intervals) against a con-
stant background with the camera position and light-
ing conditions kept constant (see Fig. 2).

We constructed LCV models from 5 objects, using
as basis views the images at±20o from a frontal view,
while ensuring that the manually chosen landmarks
were visible in bothI ′ andI ′′ (Fig. 1). Comparisons
were carried out against target images from the same
set of modelled objects taken in the frontal pose at 0o.

In total, we carried out 500 experiments (250 with
each optimisation method× 10 tests for each model-
target image combination) and constructed two 5×5
arrays of model×image results. Each array contains
information about the matching scores represented by
the cross-correlation coefficient (Zografos and Bux-
ton, 2007). The highest scores were along the main
diagonal, where each model of an object is correctly
matched to a target image of the same object. The

recognition response should be less (or have a higher
negative log probability) when comparing a specific
model with images of other objects.

For the simplex method, we set the maximum
number of function evaluations (NFEs) to 1000 and a
fixed initialisation of:ao,a1,a3,b0,b1=1,a2,a4,b3=0.5,
b2=0.9,b4=1.4, deliberately chosen far away from the
expected solution, in order not to influence the opti-
misation algorithm with a good initialisation. In the
case of DE, we chose a much higher NFEs=20000
(100 populations× 200 generations) and specified
the boundaries of the LCV space as: -5≤ a0,b0 ≤5, -
1≤ a1,a2,a3,a4 ≤1, -1≤ b1,b2,b3,b4 ≤1. This includes
the majority of the coefficient ranges identified in sec-
tion 2.2.

The results of the above experiments, averaged
over 10 test runs, are summarised in the heatmap plot
Fig. 3(c). As expected, we can see a well defined
diagonal of high cross-correlation where the correct
model is matched to the target image. This obser-
vation, combined with the absence of any significant
outlying good matches when model6=image, leads us
to the conclusion that, on average, both methods per-
form equally well in terms of recognition results. The
only difference is how close these methods can get to
the global optimum, and in how many NFEs.

To explore this further, we have included the
plot in Fig. 4 which compares the average cross-
correlation responses for both methods. We observe
that both methods have a consistently good perfor-
mance, with the DE converging to solutions of higher
cross-correlation in the majority of cases. The sim-
plex failed to converge to the correct solution in a few
cases, particularly in some of the tests for models 1
and 9. This of course may be explained in part by the
smaller NFEs that were allowed for this algorithm,
although preliminary experiments had indicated the
NFE value chosen should generally have sufficed.

We also include boxplot diagrams, Fig. 3(d),(e),
which illustrate the diversity of the 10 coefficients in
the recovered solutions. For this, results were taken
from the test runs along the main diagonal, using both
of the optimisation algorithms. We can see that there
is little diversity in the coefficients with few or no out-
liers, indicating a stability in the values already iden-
tified by the 3d experiment (section 2.2) across dif-
ferent objects. The only significant variation is, as
expected, in the translation coefficientsa0 andb0.

Finally, we have included in Fig. 3(g),(h) for test
runs on the main diagonal when the correct model is
matched to a target image, values of the negative log
probability as the number of function evaluations in-
creases. From these, we observe the different opti-
misation behaviours of the two algorithms, DE and



simplex, and how much earlier the latter can reach
the global minimum. DE is much slower, but it has
the advantage that it can avoid locally optimum solu-
tions, which the simplex sometimes clearly cannot.

5.1 Markov-Chain Monte-Carlo

In previous sections we have introduced the poste-
rior distribution and have provided some graphs of
the variation of the individual coefficients. Neverthe-
less, graphical analysis of the 10-dimensional poste-
rior distribution is difficult, so to obtain a more spe-
cific and complete idea of its characteristics we have
used a Markov-Chain Monte Carlo (MCMC) (Gel-
man et al., 1995) approach in order to generate a sam-
ple of the distribution and further analyse it.

Briefly, MCMC is method for sampling from an
unknown distribution, requiring only that its density
can be calculated at each point. Initially MCMC
draws values from a known, starting distribution and
then gradually adjusts these draws to converge to an
approximation of the posterior distribution. These
samples are drawn sequentially with the draws form-
ing a Markov Chain. In this particular implemen-
tation, we have used the Metropolis-Hastings rule
(Metropolis et al., 1953; Hastings, 1970) and a prod-
uct of ten 1-dimensional normal distributions, such as
those used in section 3 for the priors, as a starting
distribution. In addition, the first half of the samples
were discarded in order to reduce any residual corre-
lation in the draws.

We chose a single experiment (matching to a
frontal view of object 1 at 00) and generated a set of
10000 samples of the posterior (6) from areas of high
probability using a single Markov Chain. The MCMC
converged to a point very close to the global optimum,
with a cross-correlation of 0.98508 (the best solution
recovered by the simplex was 0.987301 and that for
the DE was 0.973954). The way the MCMC grad-
ually improved the posterior probability can be seen
in Fig. 3(i) and compared with the simplex and DE
methods illustrated in Fig. 3(g) and (h).

The first step of the analysis is to determine the
major modes of the p.d.f. and find where other lo-
cally optimal solutions may be situated. For that pur-
pose, we used repeated runs of a k-means clustering
algorithm (Bishop, 1995), the best of which recov-
ered 3 main clusters in close proximity and all near
the global optimum. This leads to the conclusion that
the distribution has a single mode (i.e. peak) perhaps
with some subsidiary, nearby peaks caused by noise
effects. The main point is that there is no significant
local optimum elsewhere nearby in the distribution.

We have also included boxplots of the samples of

the LCV coefficients taken in the MCMC in Fig. 3(f).
The samples are tightly bundled with a few outliers,
another indication that the algorithm has converged to
the optimum. This reinforces the notion that the pos-
terior distribution we have constructed is unimodal.

For a quantitative, numerical analysis we have
calculated the statistical characteristics of the coeffi-
cientsa0−a4, b0−b4 produced by the MCMC sam-
pling as shown in Table 1. The characteristics of
the coefficientsa0−a4, b0−b4 described in the first
two columns are arranged in two rows in the last five
columns of the table. Our first observation is that
the means, modes and medians of each of the coef-
ficients almost coincide, consistent with the posterior
being an approximately symmetric, unimodal distri-
bution. If we look at the range values, we see once
more that the values are tightly concentrated signify-
ing a basin of attraction that bottoms-out into a few
close-by points. This is further affirmed by the low
standard deviations of the sampled values of all 10
coefficients.

If we now examine the kurtosis and skewness we
can see positive skewness in the samples of certain
coefficients and negative in others. The distributions
of the samples of all coefficients, exceptb1, are quite
strongly skewed, reflecting strong influence of the
likelihood near the optimum posterior, a property that
is highly desirable. This is due to the shape of the
likelihood function since the priors are symmetric.
The values for the kurtosis are small for some coeffi-
cients whose posteriors are therefore almost Gaussian
near the optimum, whilst other coefficients strongly
affected by the priors are leptokurtic, in particulara4,
b2 andb4.

6 Conclusion

We have shown how the linear combination of
views (LCV) method may be used in view-based ob-
ject recognition. Our approach involves synthesising
intensity images using LCV and comparing them to
the target, scene image. In addition, we incorporate
prior probabilistic information on the LCV parame-
ters by means of a Bayesian model. For the priors, we
chose Gaussian distributions centered at the expected
values of those parameters given a specific transfor-
mation (in this case rotation of the object about a ver-
tical axis in 3d).

Matching and recognition experiments were then
carried out on data from the COIL-20 public database
using two different optimisation algorithms in order
to recover the optimal LCV parameters. These exper-
iments have shown that our method works well for
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Figure 3: (a) The negative log posterior resulting from the combination of the prior and likelihood. (b) Variation plot of the
10 LCV coefficients. (c) Model x Image heatmap array with highcross-correlation on the main diagonal. (d)-(f) Coefficient
diversity plots for the DE, Simplex and MCMC methods respectively. (g)-(i) Iterative optimisation results for the three
methods. Note the different scales on the ordinate and the vertical line in (h) indicating the NFEs for the simplex method.

Table 1: Statistical characterisation of the MCMC algorithm.

Dispersion measures:
range a0: 0.069 a1: 0.072 a2: 0.038 a3: 0.034 a4: 0.036

b0: 0.045 b1: 0.058 b2: 0.037 b3: 0.009 b4: 0.043
std. dev. a0: 0.013 a1: 0.024 a2: 0.015 a3: 0.012 a4: 0.010

b0: 0.015 b1: 0.006 b2: 0.008 b3: 0.002 b4: 0.004
Location measures:

mean a0: 1.050 a1: 0.551 a2: -0.031 a3: 0.474 a4: 0.016
b0: 0.981 b1: -0.004 b2: 0.481 b3: -0.000 b4: 0.510

median a0: 1.042 a1: 0.564 a2: -0.040 a3: 0.467 a4: 0.022
b0: 0.972 b1: -0.005 b2: 0.480 b3: 0.001 b4: 0.510

mode a0: 1.042 a1: 0.564 a2: -0.040 a3: 0.467 a4: 0.022
b0: 0.972 b1: -0.005 b2: 0.480 b3: 0.001 b4: 0.510

Distributional measures:
skewness a0: 1.171 a1: -1.458 a2: 1.214 a3: 1.275 a4: -2.053

b0: 1.3685 b1: 0.305 b2: 2.520 b3: -1.689 b4: -2.071
kurtosis (-3) a0: -0.568 a1: 0.309 a2: -0.466 a3: -0.256 a4: 3.301

b0: 0.193 b1: 1.523 b2: 6.325 b3: 0.874 b4: 5.668
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Figure 4: Comparison of the average response between the
DE and simplex algorithms.

pose variations where the target view lies between the
basis views. The experiments further show the benefi-
cial effects of the prior distributions in “regularising”
the optimisation. In particular, priors could be chosen
that produced a good basin of attraction surrounding
the desired optimum without unduly biasing the so-
lution. Finally, we used MCMC to draw a sample
from the posterior distribution and carried out addi-
tional tests to characterise the shape of the distribu-
tion. The use of the MCMC approach as an optimisa-
tion solution was also briefly explored with, because
of the form of the posterior, satisfactory results.

Nevertheless, additional work is required. The
kurtosis of the posterior distribution calculated from
the samples taken in the MCMC experiment suggests
that there may be effects arising from the fact that the
LCV coefficients are not all independent. We would
thus like to reformulate the LCV equations (1) by us-
ing the affine tri-focal tensor and introducing the ap-
propriate constraints in the LCV mapping process. In
addition, in this paper we have only addressed extrin-
sic viewpoint variations, but it should also be possi-
ble to include intrinsic, shape variations using the ap-
proach described by (Dias and Buxton, 2005).
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