High bandwidth, Low Latency
Global Interconnect

Christer Svensson and Peter Caputa
Linköping University

Outline

• Introduction
• Modeling transmission lines
• Wire performance
• Network-on-chip example
• Conclusion
Outline

• Introduction
• Modeling transmission lines
• Wire performance
• Network-on-chip example
• Conclusion

Introduction

Electrical interconnects are considered to be the major limitation to performance of scaled electronics.

Wire delay ~ RC

\[RC = \frac{\rho L}{t_m W} \frac{\varepsilon w L}{t_i} = \rho \varepsilon \frac{L^2}{t_m t_i} \]

Wire delay scales as (feature size)^2
Logic delay scales as (feature size)
Introduction

If properly dimensioned, wires behave as transmission lines.

Wire delay $\sim L/v_d$

$v_d = v_0/n$

$(n = \sqrt{\varepsilon_r}, \text{refractive index})$

Global wires **not** scaled, use upper level metals

Wire delays related to speed of light

Outline

- Introduction
- Modeling transmission lines
- Wire performance
- Network-on-chip example
- Conclusion
Modeling transmission lines

Lumped wire model:

\[y \quad \begin{array}{c} z \end{array} \]

\(z, y \) impedance and admittance per unit length

\[v = H v(0) \quad H = e^{+j\sqrt{x}} \quad i = \frac{v}{Z_c} \quad Z_c = \sqrt{\frac{z}{y}} \]

Interpretation: One wave in each direction

In our case, with skin effect:

\[z = j\omega l + r = j\omega l + r_{dc} + r_s(1 + j)\sqrt{\omega} \quad y = j\omega C \]

Step response

Step response of transfer function \(H \)

Attenuation <50% \(\rightarrow \) transmission line behavior
Modeling transmission lines

\[G(\omega) = \frac{2Z_L H}{Z_L \left(1 + H^2\right) + \frac{Z_S}{Z_c} \left(1 - H^2\right) + Z_L \left(1 - H^2\right) + \frac{Z_S}{Z_c} \left(1 + H^2\right)} \]

For \(Z_s = Z_L = Z_c \): \(G = H \) (Note that \(Z_c \) depends on \(\omega \))
For \(Z_s = Z_c, Z_L = \infty \): \(2H \) (\(\omega \rightarrow \infty, Z_c \rightarrow Z_0 = \sqrt{I/c} \))

Converting to time domain

\[H = e^{-j\omega t + r} \] Voltage transfer function
\[s = \frac{1}{2} \left(1 + \text{erf} \left(a_i (t - t_i) \right) \right) \] (Step response in time domain)
\[v(t) = \text{ifft} (HS) \] (Step in time domain)
Modeling transmission lines

Step response of open wire
($Z_S=Z_0$, $Z_L=\infty$)

Step response of H alone

Attenuation \(\approx 50\%\)

Note:
Full step response better than H alone

Outline

- Introduction
- Modeling transmission lines
- Wire performance
- Network-on-chip example
- Conclusion
Wire performance

Latency (delay)

High loss case (RC-case), \(r_{DC}L/Z_0 > 2\ln 2 \). Elmore delay good approximation:

\[
t_d = \left(R_s (C_x + C_u + C_l) + R_u \left(\frac{C_u}{2} + C_l \right) \right) \ln 2
\]

\[
Z_d = R_s \quad Z_L = \frac{1}{sC_l}
\]

Low loss case (LC-case), \(r_{DC}L/Z_0 < 2\ln 2 \):

\[
t_d = \frac{L}{V_d} = \frac{L}{V_0/\sqrt{\varepsilon_r}}
\]

Wire performance

Capacity or maximum data rate

Eye opening \[= 2S(T) - 1, \quad S(t) \text{ step response, } T \text{ symbol time}\]

We need a minimum opening for safe data detection, say 64%
Wire performance

Pre-emphasis

Pre-emphasis is a standard method to increase the data-rate by “sharpening” the step response

The open-wire response shows “self-pre-emphasis” because of frequency-dependent Z_c

Pre-emphasis is further enhanced by “overdriving”, using $R_S < Z_0$
Wire performance

Crosstalk

Neighboring wires cause crosstalk, which further reduces the eye-opening

64% eyeopening without crosstalk, plus 18% crosstalk leaves 46% eyeopening

Crosstalk is a complex function of mutual inductance and capacitance (function of wire spacing), signal risetime, and driver and load impedances. We simulated it using HSPICE (and two neighboring wires).

Wire performance

Power consumption

For "short", open wires (electrical length < half symbol time) (1cm length at 10Gb/s):

\[P = \frac{1}{4} B C \omega V_{\text{dd}}^2 \]

B, datarate, \(V_{\text{dd}} \), voltage swing, data assumed random
Outline

- Introduction
- Modeling transmission lines
- Wire performance
- Network-on-chip example
- Conclusion

Network-on-Chip example

- Cores (processors, memories, etc.)
- Each data link
 - In upper, thick metal,
 - max length 2cm
- Router
- Data link
- Memory management
- External memory
- clk
Network-on-Chip example

Wire/driver example

Inverter in 0.18μm CMOS
W_n=88μm, w_p=194μm, R_s=20Ω

2μm x 4μm copper wire, low loss
12μm spacing, X-talk<18%

Estimated performance

• Simulated velocity: 10^8m/s (c_0/3)
• Simulated maximum data-rate 10Gb/s
• Each link is 16 bit wide, 2 links carry 320Gb/s (bidirectionally)
• Each 2 links need 544μm width

8 by 8 Network:
• Bidirectional, bisection bandwidth: 2560Gb/s (also one edge I/O)
• Total bandwidth available to cores: 20480Gb/s
 (if 10% load, still >2Tb/s bandwidth)
Network-on-Chip example

Estimation of space and power

8 by 8 network on 20 by 20 cm chip
31% of one metal layer used
Total power estimated to 1.4W
(at full random data activity and 1.8V)

Conclusions

By utilizing thick upper metal layers (2µm) as microstrip:
• We may reach velocities close to velocity-of-light
• We may reach global (2cm) bandwidths of 10Gb/s

A 8x8 2D Network-on-Chip concept may
• Serve 64 cores with up to 20Tb/s bandwidth
• Sustain 2Tb/s bisection bandwidth
• All at less than 1.4W power consumption