On the Design of an Antenna Switch in 28 nm FD-SOI CMOS

Lars Landén, Mohammad Billal Hossain
Acreo Swedish ICT AB, Norrköping, Sweden

Ted Johansson
Linköping University, Linköping, Sweden
Introduction and Outline

• EU project within ECSEL
• Support ST Microelectronics with demonstrations of feasibility of FD-SOI
• Evaluations not yet finished

• 28 nm FD-SOI (UTBB)
• Antenna switch design and consideration
• Results from on-going work
UTBB vs. bulk CMOS
28 nm FD-SOI (STM)

$L_g=24$ nm, $T_{ox}=1.8$ nm, $V_{sup}=1.0$ V
ultra-thin silicon: 7 nm
ultra-thin buried oxide: 25 nm

High-k dielectric
Metal-gate electrode
S/D: epitaxy raised
Undoped channel
Bulk/SOI integration

"High-voltage" design:
$L_g=150$ nm, $T_{ox}=2.8$ nm,
$V_{sup}=1.8$ V (+10 %)
Limitations on the maximum voltage

- Conventional bulk CMOS: many possible diode breakdowns to well and substrate.
- Scaled bulk CMOS: breakdowns approaching 4-5 V.
- SOI: reduced problems with breakdown to the substrate, possible to stack components.
Design of RF-blocks on FD-SOI

- Broadband LNA
- Capacitive feedback LNA
- Passive double balanced resistive FET mixer
- LO distribution network
- PA core
- RF switch

Generic TDD radio front-end
Test chip = 1.5 x 2.2 mm2
RF antenna switch (SPDT)

- 30 dBm
- 50 Ohm
- IL < 1 dB
- Isolation > 30 dB
- IM3 < -50 dBc
- f = 1.9 GHz
- 28 nm FD-SOI CMOS
Switch design in Cadence

- 30 dBm @ 50 Ohm => 10 V_p
- 6 stacked transistors (1.8 V + 10 %), W/L= 1 mm/150 nm
Pin = 30 dBm
By adding capacitors between the blocks, better phase balance was achieved.
By adding capacitors between the blocks, better phase balance was achieved.
PCB design in ADS
Chip and testboard, ready for measurements

• Currently under evaluation
Problem with tie-down diodes

• Tie-down diode limits maximum power (voltage). Voltage peaks will cause diode to open to substrate.

• Test structure specific, not in integrated switch.
This work has been performed as part of the ECSEL (formerly ENIAC) Joint Undertaking project PLACES2BE, funded in Sweden by VINNOVA and ECSEL JU

www.liu.se