Overview
Overview

• Types of Power Devices
 – PNPN Thyristor
 – TRIAC (Triode Alternating Current)
 – GTO (Gate Turn-Off Thyristor)
 – BJTs (Bipolar Junction Transistors)
 – VMOS (Vertical/V-groov) and DMOS (Double diffused MOS)
 – Lateral DMOS (LDMOS)
 – IGBT (Insulated Gate Bipolar Transistor)
 – BCD (Bipolar CMOS DMOS)
Bipolar Power Devices

- Current carried by both majority and minority carriers
- Include
 - Two-layer diodes
 - Three-layer bipolar transistors
 - Thyristors
 - TRIACs
 - GTO
 - Darlington Transistors
 - Four+ layer IGBTs
Bipolar Power Devices

- **BJT (1960s)**

![BJT Diagram](image-url)

Image taken from All About Circuits (www.allaboutcircuits.com)
Bipolar Power Devices

- BJT\[^1\] (1960s)
 - Conceptually same as ordinary BJTs
 - Active area distinctly larger \rightarrow Much higher current handling capacity
 - Thick and lightly doped collector (10^{13} cm$^{-3}$) \rightarrow Large breakdown voltage (as large as 3000 V)
 - Structure redesigned to
 - Effectively manage power dissipation
 - Avoid Kirk effect
Bipolar Power Devices

• BJT \[^1\]
 – Power dissipation is minimized
 – Spreading the heat dissipation onto a large area
 – Kirk effect avoided by increasing collector doping density
 – But for large breakdown voltage devices, Kirk effect avoided by
 • Low current density of 100 A/cm\(^2\)
 • Large currents – up to 1000 A – obtained by large area device
 – SiC devices \rightarrow Hailed as Perfect for high-power BJTs
Darlington Transistors[1]

Invented at Bell labs by Sidney Darlington in 1953
Darlington Transistors [1]

- Two transistors in an emitter – follower configuration
- Same collector
- Fabricated using same technology as BJT
- Total current gain = Product of current gain of two transistors
- Larger saturation voltage = Forward bias voltage (Q2) + Saturation voltage (Q1)
- Large on-state power dissipation
Thyristors[1] (1950s)

- Also called Silicon Controlled Rectifier (SCR)
- 4-layer device with alternating \textit{n}-type and \textit{p}-type layers
- Silicon thyristors most common
Thyristors[1]

- High power handling capability
- High breakdown voltage
- High gain
- Low on-stage resistance
- Q1 is NPN, Q2 is PNP
- Latching behaviour similar to flip-flop
Thyristors[1]

- **Operation**
 - Current to gate of Q1 \rightarrow BE junction of Q1 forward biased \rightarrow Collector current in Q1 \rightarrow Base current to Q2 \rightarrow BE junction of Q2 forward biased \rightarrow Collector current of Q2 \rightarrow
 - Additional base current for Q1
- Transistor can remain ON even if gate current of Q1 is removed
- Lower on-state voltage
- Small turn-on current
Thyristors

• Disadvantage
 – Cannot be turned off by just removing gate current because of latching behaviour
 – Power supply needs to be disconnected
 – Minority carriers accumulate in base of each transistor
 – Need to be removed before reconnecting the power supply
 – Slowly ramp the power supply to avoid triggering the thyristor
Gate Turn Off (GTO) Thyristor[2]

- Similar to Thyristor
- Used in DC-AC and DC-DC high voltage conversion units
- Turned ON using a signal of positive polarity at gate
- Turned OFF using a signal of negative polarity at gate
- Small gate current must be maintained after turn-on to improve reliability
GTO Thyristor
GTO Thyristor[2]

- **Turn-On** → Inject current in base of NPN transistor → NPN turns on → Collector of NPN turns PNP on → PNP on ensures NPN is on (Feedback)
- **Turn-Off** → Negative bias at gate w.r.t. cathode → Voltage drop in base → Junction reverse bias → No current in NPN → No current in junction in PNP
- Long switch-off times
- Long tail current
- Maximum switching frequency → 1 KHz
TRIAC[1]

- Similar to thyristors in their latching behaviour and multi-layer vertical structure
- Used in AC-powered systems responding similarly to positive and negative applied voltages
- PNPN connected in parallel to NPNP
- Additional contact to p-type as well as n-type gate of the NPNP and PNPN structure respectively
- Additional gate allows for lowering the threshold for latching

1 Principles of Electronic Devices by Bart V. Zeghbroeck (University of Colorado Boulder)
TRIAC

Terminal 1

Gate

Terminal 2

Triac

(AC Thyristor)

A1

G

A1

P

N

A2
Insulated Gate Bipolar Transistors (1980s)

• A combination of DMOS and PNP bipolar device
• Combines high DC current gain, high impedance, low conduction losses and high speed (20 – 100 KHz) of DMOS with high current handling capability and high breakdown voltage of a BJT
• Can be called a voltage controller bipolar device
IGBTs
IGBT\cite{1}
IGBTs

• Advantages
 – Low on-state voltage drop
 – Superior on-state current density
 – Low driving power
 – Excellent forward and reverse breakdown capabilities

• Disadvantages
 – Switching speed in between MOSFET and BJT
 – Possibility of latchup due to internal PNPN thyristor structure

• Applications
 – Pulse width modulation servo, three-phase drivers, UPS, switched mode power supplies and power circuits requiring high switch repetition rates
Power MOSFET Devices (1970s)

- Diverse range of discrete and integrated components
 - Planar DMOS
 - Superjunction DMOS
 - Trench DMOS
 - LDMOS
 - Bulk LDD LDMOS
 - RESURF LDMOS
 - SOI RESURF LDMOS
Power MOSFET Devices

• Main characteristics
 – Vertical structure
 – High-impedance gate drive
 – Low on-state conduction losses
 – High frequency (> 1 MHz) switching ability
 – High off-state breakdowns
 – Easy paralleling of integrated or multiple discrete devices
 – Switching speed not limited by minority carrier recombination
 – Device can maintain a constant current over a wide voltage range
 – Drain voltage ratings vary from 3 V for submicron planar devices to 1200+ V for vertical DMOS
 – Can survive operation in avalanche like in car’s ABS brakes
Power MOSFET Devices

• A diverse range of devices specified by
 – Maximum rated gate and drain voltages
 – Channel polarity (N,P, CMOS)
 – Construction (planar or trench gate, uniform or DMOS channel)
 – Current flow (lateral, vertical, quasi-vertical)
 – Threshold voltage including enhancement or depletion mode types
Double Diffused MOSFET (DMOS)

• Characterised by p-type well or body diffused in a low doped n-type drain region
• Dominate high voltage (>100V) designs
• Different constructions
 – Planar DMOS with a deep-P optional layer
 – Superjunction DMOS with multi-epi
 – Trench DMOS with 1-of-n deep-P optional layer
 – Trench DMOS for charge balance
 – Lateral DMOS (LDMOS) for high-power RF applications
 – Lightly Doped Drain (LDD) LDMOS for operations below 20V
 – Reduced Surface Fields (RESURF) LDMOF and SOI RESURF LDMOS
Planar DMOS

- P-type well or body
- Diffused into a N-epi (drift)
- N+ source formed inside the well
- Channel formed by inverting p-body
- Lightly doped N-epi helps increasing the breakdown voltage
- Source current flows underneath the gate and vertically through the drain
- A short channel device
- Lower on-resistance and faster switching because of vertical structure
Planar DMOS
Planar DMOS

- V-groove and U-groove construction
- Provides high current handling capability and high breakdown voltage
Superjunction DMOS[3]

- A charge compensation structure
- Replaces n-type and p-type regions in the drift layer with alternating p-pillars and n-pillars
- Reduces the normalized on-resistance ($R_{DS,A}$)
- Active area can be made smaller for same on-resistance
- Enables $R_{DS,Q_{GD}}$ to be reduced as well

[3] Y. Oonishi, Akihiko Ooi and T. Shimatou, “Superjunction MOSFET”, Fuji Electric
Superjunction DMOS[3]

- Charge balance needs to be maintained to maintain breakdown voltage
- Impurity concentrations of the \textit{n}-type and \textit{p}-type regions must be controlled with precision
- Fabricated using a method of multi-epitaxial growth
Superjunction DMOS[3]
Trench DMOS

• Introduced by Siliconix[4]
• Conducting channel formed vertically along the sidewall of a trench
• Capable of improved on-resistance at high cell densities (1.25 million cells/cm2)[5]
• Translates into fewer components and enhanced reliability in high-current applications like ABS, power steering, air-conditioning
• Charge balance Trench DMOS similar to superjunction DMOS
Trench DMOS
Laterally Diffused MOS (LDMOS) (1990s)

• Dominant device technology in high-power RF power amplifier applications
• Asymmetric MOSFET for low on-resistance and high breakdown voltage
• Operational frequency range from 10 MHz to 3.8 GHz and voltage range from 28 to 50 V (NXP)
• Provides superior linearity, efficiency, gain and lower cost packaging applications
LDMOS

50V RF LDMOS – White paper by Freescale
LDMOS

50V RF LDMOS – White paper by Freescale
LDMOS

• Different flavours
 – Lightly doped drain LDMOS (LDD LDMOS)
 – RESURF LDMOS (reduced surface fields)
 • High voltage devices on thin epitaxial layer with low on-resistance
 • Voltage range of 20-1200 V
 • Gives the best trade-off between breakdown voltage and on-resistance for lateral devices
 • Peak electric field is reduced to create uniform field
 – SOI RESURF LDMOS
 • Nearly ideal uniform electric field profile is achieved
 • Monotonically increasing the charge profile from source-to-drain
LDMOS
High-Voltage and Power ICs

• The “quiet” revolution → Development of high voltage (HVICs) and power ICs (PICs)
• Reuse of legacy submicron digital and ex-DRAM wafer fabs
• Integration of disparate analog and digital control with power devices, programmable logic, memory and sensors
• Example → PMICs for smartphones integrating 20 linear and switching regulated voltages with a switching charger
• Example → HVICs including three phase motor inverter for air conditioners
• Example → Miniature universal input AC adapters for USB phone charging
Bipolar, CMOS and DMOS (BCD) Technology

• Invented by ST in 1980s
• Integrates three technologies
• Wide used for power integration
• Benefits directly from
 – CMOS scaling and feature density
 – Progress made in lateral, quasi- and vertical power devices through difference constructions
 • High-density planar and trench gates
 • Drain engineering using LDD
 • Multi-RESURF
 • Superjunction
 • Shallow and deep trench isolation etc.
 – Integrating two carrier high voltage devices such as IGBTs
BCD

- Some example figures
BCD
BCD

• Suffers from unwanted parasitic MOS devices, NPN and PNP transistors and thyristors

• Different process methods for suppressing parasitics
 – Junction Isolation
 – Dielectric isolation
 – Silicon on insulator
 – Deep trench isolation

• Used to isolate power devices and sensitive circuit blocks into silicon islands
BCD

• Layout methods include
 – Locally shorting base-emitter junctions
 – Utilizing guard rings, field plates and deep trench isolation in sensitive areas

• Interconnects also a challenge
 – Need for fine line metal conflicts with thick metal required by power devices
 – Multi-layer metal using a dry-etched thick copper or Al-Cu top layer
 – Chip-scale packaging
Selected Paper

• Tsung-Yi Huang et al., ”0.18µm BCD Technology with Best-in-Class LDMOS from 6 V to 45 V,” in Proc. IEEE Int. Symp. on Power Semiconductor Devices and IC’s (ISPSD), pp. 179 – 181, 15 –19 June 2014.

• Proposes a novel nLDMOS structure in BCD technology with multi-oxide in the drift region to reduce the on-resistance at a low cost
Conventional LDMOS transistors in BCD suffer from an increase in on-resistance as BV_{DSS} increases.

Performance as such is limited by the fixed oxide thickness in the drift region.

Proposes a two-step-oxide in the drift region.

Thickness near the channel region is thinner than the isolation oxide.

First oxide thickness customized with optimized profile in the drift region.

Achieves best performance between R_{on} and BV_{DSS}.
Selected Paper
Selected Paper
The potential and impact ionization simulation results of a (a) conventional structure (b) novel structure
Simulated current vector of a (a) conventional structure (b) novel structure
The I-V curves of 36V LDMOS
The I-V curves of 45V LDMOS
Selected Paper

The benchmark of existing BCD technologies and proposed structure
Selected Paper

<table>
<thead>
<tr>
<th>Device name</th>
<th>R_{on} (m$\Omega$$\cdot$mm2)</th>
<th>BV_{dss} (V)</th>
<th>BV_{on} (V)</th>
<th>Punch-through (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6V DMOS</td>
<td>3.7</td>
<td>14.3</td>
<td>>8</td>
<td>84</td>
</tr>
<tr>
<td>8V DMOS</td>
<td>5.2</td>
<td>17</td>
<td>>10</td>
<td>84</td>
</tr>
<tr>
<td>17V DMOS</td>
<td>8.7</td>
<td>27.2</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>24V DMOS</td>
<td>13</td>
<td>37.4</td>
<td>37</td>
<td>55</td>
</tr>
<tr>
<td>36V DMOS</td>
<td>22.9</td>
<td>48.2</td>
<td>48</td>
<td>60</td>
</tr>
<tr>
<td>45V DMOS</td>
<td>33.7</td>
<td>68</td>
<td>59</td>
<td>62</td>
</tr>
</tbody>
</table>
Wide Bandgap Power Devices

• The electrical and thermal properties of silicon diminish its future prospects
• Small bandgap (1.1 eV) and high leakage currents prohibit operation above 200 C
• Device on-resistance a strong function of electric field
• This electric field of GaN and SiC exceed by around an order of magnitude \rightarrow 10 times the voltage or same voltage at 1/10 device size and 10% resistance
Wide Bandgap Power Devices

- GaN high-electron mobility transistors (HEMT) can substantially improve mobility and reduce resistance
- First WBG devices comprising SiC commercially available from 100 mm wafers
- They include Schottky diodes, BJTs, JFETs, MOSFETs
- GaN devices focus on lower power ratings using lateral FET designs up to 1 kV
- Integrating GaN devices on top of silicon ICs using existing fabrication facilities
- Material, device and fabrication challenges remain
Conclusion

• Different types of power devices exist
 – Initially bipolar devices used
 – MOSFETs heralded the dawn of high-frequency gate controlled power semiconductors
 – Concepts combined into IGBTs resulting in low conduction losses, high speed, low on-resistance
 – Power MOSFETS typically vertical but lateral devices find application in RF power amplifiers
 – A number of power devices can be fabricated in the same technology, called BCD
 – Wide bandgap devices provide order of magnitude improvement over silicon devices in terms of temperature, voltage and on-resistance but few devices are commercialized