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Abstract—Recent years have seen advances in the estimation
of full 6 degree-of-freedom object pose from a single 2D image.
These advances have often been presented as a result of,
or together with, a new local image descriptor. This paper
examines how the performance for such a system varies with
choice of local descriptor. This is done by comparing the
performance of a full 6 degree-of-freedom pose estimation
system for fourteen types of local descriptors. The evaluation is
done on a database with photos of complex objects with simple
and complex backgrounds and varying lighting conditions.
From the experiments we can conclude that duplet features, that
use pairs of interest points, improve pose estimation accuracy,
and that affine covariant features do not work well in current
pose estimation frameworks. The data sets and their ground
truth is available on the web to allow future comparison with
novel algorithms.

I. INTRODUCTION

Pose estimation, or estimation of the 6 degree-of-freedom

geometrical state from a single 2D image is an important

problem that has received considerable attention over the

years [1], [2], [3], [4], [5], [6], [7]. Applications include

industrial automation such as bin picking (see figure 1),

support systems for augmented reality as well as a whole

range of consumer products including toys and house-hold

appliances. Important properties of a real-world system for

pose estimation is robustness to occlusion, changes in scale,

and lighting. Occlusion is usually handled by using local

descriptors [8], [9], and robustness to scale is usually solved

by some kind of scale-space approach [10]. Robustness to

lighting changes seems to be the most challenging problem,

as will be made evident in the experiments section, and

most local descriptors attempt to deal with this by using

normalised features based on derivatives of the intensity.

The local features typically used in view-based pose

estimation have previously been evaluated for the purposes

of view matching, and object recognition. In such evalua-

tions, computation can be divided into three steps: detection

of interest points, descriptor construction, and descriptor

matching [9]. A pose estimation system, by necessity, has

to contain two additional steps: pose hypothesis generation,
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Fig. 1. Bin picking.

and pose clustering [1], [6]. For this reason, a feature that

is completely view invariant will be quite useful in view

matching and object recognition, but useless in giving a pose

estimate. This justifies the need for specific evaluation of

local features in the pose estimation framework.

In this paper we will detail a framework and data sets for

a performance evaluation of full 6 degree-of-freedom pose

estimation. We do also evaluate the performance for fourteen

local descriptors in this framework. The test is performed

with a strong relation to industrial automation, where several

instances of the same object need to be distingusihed, see

figure 1. Therefore this particular test is constrained to

recovering the pose for one specific object at a time, without

attempting to determine the object type. There is however

no fundamental limitation to one object, and indeed a similar

framework has been used with several objects (albeit without

determining pose) in [11]. The framework and two of the

local descriptors we test have previously been proven to work

in a system for bin picking in [1].

The data-set we have produced for the evaluation is

divided into two sub-sets. The first sub-set consists of 16

objects seen from 0 − 180◦ rotation in one degree-of-

freedom and 0 − 90◦ in another, both sampled in steps

of 5◦. All 16 objects are available with and without a



cluttered background. One of the 16 objects is available in

two additional lighting settings, i.e. in total that object has

three full rotation sets with black background and three with

a cluttered background. All in all, the first sub-set consists of

25 308 color images of mega-pixel size, tagged with rotation

angles in their file names. The second sub-set consists of a

series of 600 images for one of the objects captured with

another camera under varying zoom. The combined data-set

allows for controlled evaluation of off-image-plane object

rotation, under varying lighting conditions, scale change,

both with and without cluttered background. We also provide

images of a stationary object with a moving light source.

The data-set could besides being used for evaluation of local

descriptors in pose estimation also be used for evaluation

of interest point (IP) detectors, or complete frameworks for

pose estimation. The entire data-set is available for download

at [12].

A. Related Research

Evaluation of interest point detectors and local descrip-

tors have previously been done on the wide-baseline stereo

task [13], [9], [14], and in the setting of recognition of objects

or object class [15], [16]. The object pose estimation problem

is however sufficiently different from wide baseline stereo

and general object recognition to require a separate feature

evaluation. In object recognition and wide baseline stereo,

view invariance for features is a good thing. In the object

pose estimation application it is on the other hand important

that a descriptor can be distinguished within a large database

of descriptors, many of which were generated from visually

similar image patches. In other words, the features need to

be view specific if they are to tell one view from another. For

this reason it is not obvious that a pose estimation evaluation

will rank local descriptors in the same way as wide-baseline

and object recognition tests.

To the best of our knowledge there are no publically avail-

able datasets that allows for controlled evaluation of pose

estimation with sufficient accuracy for grasping. The annual

PASCAL VOC datasets only provide pose information in

the form of the view tags ’frontal’, and ’side’. The COIL

database [17] which has 100 images of 72 neatly centered

objects at low resolution, only has one rotational degree of

freedom. The closest to a pose estimation dataset is the one

recently provided by Savarese and Fei-Fei [18]. This dataset

has 8 angles along one rotational degree of freedom, 2-3

elevation angles, 3 scales, and 9-11 instances for 10 different

objects. The purpose of this dataset was however not pose

estimation for grasping, and consequently their sampling

along the rotational degrees of freedom is much too sparse.

For instance in [16] it is shown that for non-planar objects,

all local features tested required at least a sampling density

of about 25◦.

Interestingly, the upper bound of about 25◦ on view

change found in [16] fits well with work on modelling

human vision. In [19] it is shown that the human visual

system works as if it used a view-based lookup function

when recognizing objects, and is robust up to about 20◦ view

change. This is also in line with our choice of step size for

training in the manipulator angles.

B. Contributions

We here present an evaluation framework for local features

in 6 degree-of-freedom view-based pose estimation, and also

make the used data-set publicly available on the web [12].

In the setting of pose estimation from a single image we

expand upon previous publications in the following ways:

1. we include 14 descriptors from [3], [4], [7], [8], [9],

[20], [21], [11], most of them untested in the setting. 2.

the tests are made more extensive by using 16 different

objects with sufficiently high sampling density and addi-

tionally they include a cluttered background. 3. we add a

new light change sequence with three fixed light sources

and known groundtruth. This new sequence does not have

as large variations as the the previously used freely moving

light source test [21] to which we again add many more

descriptors.

II. POSE ESTIMATION FRAMEWORK

This presentation uses a match–vote–cluster scheme for

performing view-based pose estimation. The approach is

common in the literature [6], [21], [11]. The description

of the framework is divided into the two modes it is run

in; training and query (or evaluation) mode. As an example

the SIFT descriptor will be used as part of the explanation.

Adaptations with regard to other descriptors are described

for each of them in section III.

A. Pose Representation

The 6 degrees-of-freedom (DOF) pose of an object in

the camera coordinate system, G = (X Y Z θX θY θZ)
T

,

consists of the object position along three orthogonal axes,

and three rotation angles about these axes. Since this repre-

sentation is useful for grasping, we will refer to it as grasping

coordinates.

When estimating an object pose from local image features,

it is however convenient to use a different representation,

E = (x y ∆α ∆s φ θ)
T

, which we will refer to as esti-

mation coordinates. Two DOFs can be determined from the

image plane location of the object (x, y). Another two DOFs

are given by the relative image plane rotation (∆α), and the

relative scale change (∆s), both in relation to a reference

view. The two remaining DOFs are represented by the two

object rotation angles (φ, θ), see figure 2. Provided that image

rectification has been performed, that the camera calibration

parameters are known, and that the pose in the reference view

is known, conversion between the two pose representations

is straightforward [7].

B. Training

The system is trained using a set of images of an object

sampled from different viewing angles. It can be argued

that the more physical state attributes the method/system is

invariant to, the fewer samples are needed. The features we

use are invariant to position, image plane rotation and to
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Fig. 2. An object sampled over the two pose angles.

some extent scale. We therefore only need to sample images

by varying the two viewing angles φ and θ, see figure 2. We

will in this presentation refer to these angles as pose angles.

During training, the system does the following for each

training image:

1) Detect interest points (IP)

2) Extract local descriptors

3) Store each descriptor together with

auxiliary information.

In the case of the SIFT descriptor the auxiliary information

consists of the pose angles (φ, θ) the position in the image

where the IP was found (x, y), the scale where it was

found (s), and the reference direction specified by the SIFT

descriptor (α). For conversion to grasping coordinates (see

section II-A) we also need to store the image position of one

or more reference points on the object, and the distance to

the object (or alternatively, the object size).

Collecting and storing data in this manner for later use

in e.g. interpolation, is called as lazy learning or memory

based learning [22]. Interestingly, the human vision system

also appears to work as if it used database look-up functions

when recognizing objects [19].

C. Querying / evaluation

Once the system has been trained, we want to use it to

estimate the geometrical state of an object (represented by

the estimation coordinates). The whole estimation procedure

is illustrated in figure 3, and can be detailed according to:

1) Detect IPs

2) Extract descriptors

3) Find the k most similar features in the database

4) Retrieve the pose angles from the auxiliary information

5) Compute the rest of the pose estimate using the feature

location and scale, and the auxiliary information.

6) Cluster in the 6 dimensional vote space (where the

estimation coordinates live) to find the most likely pose

estimate.

Steps one and two are the same as during training. Step

three uses the Euclidean distance to compute the k near-

est neighboring matches between the query and prototype

descriptors. In step four the pose angles are found directly

from the auxiliary information. Step five varies between the

different descriptors and will be detailed in section III. In the

case of the SIFT descriptor, image plane rotation is found

as the difference in reference directions between the query

and prototype features. Scale change is found as the quotient

Query 
image

...
Query descriptor &
location information ...

Prototype descriptor &
auxiliary information

. . . . . .

knn

6-dim space

Clustering

Calculate invariant
information

Fig. 3. Overview of the query mode.

between the scales for the query and prototype features. The

relative position is then retrieved by de-rotating the location

of the detected feature, and then subtracting the location of

the prototype feature.

The last step is again the same for all methods in this

presentation. The votes for the pose angles φ and θ, image-

plane rotation α, relative position and scale change are

inserted into a 6-dimensional space. To find local density

peaks in this space and estimate a mean of such a peak,

or cluster, mean-shift clustering [23] is used. Mean shift

clustering outputs a cluster density value Di for each cluster,

with Di ≥ Di+1 and from these we compute a certainty

measure c ∈ [0, 1], as

c = 1 − D2/D1 . (1)

A high c value signifies that the highest peak D1 in the

pose estimate density is well above the second highest D2,

and is thus most likely the correct one. This means that the

method can be used to search for several objects of the same

kind as they will form different clusters. The computational

complexity is linear in the number of detected features. This

approach is quite common in the literature, see e.g. [6], [21],

[4], [11].

III. LOCAL DESCRIPTORS

This section describes the local descriptors that are evalu-

ated in this presentation. The local descriptors can be divided

into two classes; singlets and duplets. The singlets use a

single IP to form the descriptor whereas a duplet uses two

IPs to form one descriptor. In the case of duplets, the position

of both IPs are saved together with the descriptor during

training of the system.

A. Patch-duplets (PD & PDCC)

The first patch-duplet variant [21], referred to as PD, uses

a sub-pixel Harris detector for IP detection. This method

forms pairs between each IP and its three closest IPs.

The second variant [11] is referred to as PDCC for

Patch-duplet from Colour Contour frames. It uses a colour

modification of the Canny edge-detection and is the only IP

detection method in this test that makes use of colour images.



The detected edges are split into contour segments that fit

either a line, or an ellipse model. IPs are chosen as the two

points furthest from each other. The combinatorics are not

as bad as in the PD case, since each IP only forms a duplet

with the IP to which it is connected by the line segment or

ellipse.

Both patch-duplet variants use a descriptor computed from

the double angle representation [24] of the local orientation

in box-shaped area around each IP. The connection of two

IPs gives both an orientation for the boxes as well as a size

for the area which depends on the distance between the IPs.

Both patch-duplet variants extract IPs and descriptors for

only two scales of the input image.

Duplets use the distance between its two points to recover

scale. Rotation and position of the object uses the center

point on the line connecting the two IPs in the duplet.

B. Scene-Tensor Duplets (ST)

The Scene-Tensor (ST) [3] extends on the orientation ten-

sor [24] by using information on location as well as gradient

direction. This makes it possible to extract information on

line segments within the estimation window of a specific ST.

IP detection is done in 2 scales and is refined by information

extracted from the tensor. Once the information has been

extraced from the ST, IPs are connected much like in the

case of the Patch-duplet in section III-A and a very basic

duplet with only 4 values for invariant angles is formed.

Pose recovery for the ST duplets in query mode is identical

to the PD.

C. Log-polar Sampled Patches (LP & LPSI)

Log-polar sampled patches are related to geometric

blur [25] but were designed specifically for pose estima-

tion [4]. In [4] it is stated that each detected IP can be seen as

a point of fixation for a steerable camera that then uses foveal

sampling as a means of focusing processing in the area close

to that point. After a patch with edge information in double

angle representation [24] is sampled using the log-polar

sample pattern it is normalized. Each extracted descriptor

gets transformed using the discrete Fourier transform before

it is stored, thus transferring the information on scale and

rotation to the phase of the patch. The auxiliary information

stored with the descriptor is IP position and the scale at

which it was found. The use of two IP-detectors for the log-

polar patches gives two variants in this presentation.

The first variant [4], referred to as LP in this presentation,

uses the same sub-pixel improved Harris IP detector as PD.

Like in the PD case, the IPs are detected in two scales.

The second variant, suggested in [7], uses difference-of-

Gaussians (DoG) for IP detection. The size of the log-polar

sampled region is controlled by the scale at which the IP is

found and it is called LPSI (SI for scale invariant). The DoG

implementation was taken from [26].

In matching, only the magnitude of the descriptor is used,

thus making it invariant to scale and rotation. Scale and

rotation are recovered by correlating the matched patches

after an inverse Fourier transform has been applied to them.

Compared to LP, LPSI also uses the quotient between the

scale at which the IPs were detected and multiplies that with

the scale factor found by correlation between patches. This

means that LPSI does not have to recover as large changes in

scale by correlation alone, which should make it more robust

to scale changes. Position is calculated by first transforming

the prototype descriptor position to the vote space using the

scale and rotation from above and then taking the difference

to the query position.

D. SIFT

A very good and detailed presentation of the scale invari-

ant feature transform can be found in [27]. For details on how

SIFT is used in pose estimation, see section II. We have used

the implementation provided by Lowe [28].

E. SURF

The speeded up robust feature, or SURF [20], includes

both an IP detector and a descriptor. In this report the SURF

implementation from [29] was used, only slightly modified to

output scale and orientation instead of the covariance matrix

which is the default. We only matched descriptors with the

same Hessian sign just as it is described in [20], but used the

same matching code as for all the other descriptors. Except

for the Hessian sign being used as auxiliary information,

pose estimation is done like for SIFT.

F. Affine Covariant Features

We have also used a number of feature detectors and

descriptors from a binary provided on the web by K. Miko-

lajczyk [30]. We have used the features GLOH, Cross

Correlation (CC), Differential Invariants (DI), Shape Context

(SC), SIFT+HarrisAffine (SIFTH), Spin Images (Spin), and

Steerable Filters (SF). These features are described in [9].

All these features are used in the same manner as described

for SIFT in section II.

G. Descriptor size

Besides the performance, it is also of interest to compare

the number of elements in each descriptor, see table I. A

larger descriptor (as for SIFT, GLOH, and SIFTH) means

more storage requirements, and thus, at equal performance,

a smaller descriptor is usually preferred. Note also the

very small descriptor size for ST. Due to differences in

implementations (Matlab, C-code, implemented by varying

people) it is hard to estimate complexity variations between

descriptors. It is however our subjective loose analysis that

their complexities are similar.

LP LPSI PD PDCC ST SIFT SURF

# 110 110 64 64 4 128 64

GLOH CC DI SC SIFTH Spin SF

# 128 81 12 96 128 50 14

TABLE I

NUMBER OF ELEMENTS IN DESCRIPTOR

IV. POSE ESTIMATION EXPERIMENT

Our pose estimation experiments are similar to the ones

in [21] but extended upon.



A. Methods of Evaluation and Parameters

At the end of section I we presented the data-sets that were

produced for this publication. In the evaluation we decided

to use only a sub-set of the available images. The interval

we have used is seen in the composite image of figure 2.

This speeds up the evaluation, and for e.g. the object shown

in figure 2, the omitted views can, due to object symmetry,

be obtained by image reflections.

Fig. 4. The 16 objects used in the tests and object #6 with cluttered
background.

All objects were learned at 10◦ intervals for both the

pose angles. The evaluation is then done at the sample

positions in-between, yielding a worst-case in regards to

image distortions from the training poses. This gives that

there are 95 training views and 72 evaluation views. The test

is performed both without a background, which is similar to

having objects on a conveyor belt in a factory, and with a

heavily cluttered background, see example in figure 4.

The background was created from a high-resolution image

of random objects, including some used in the test. This

image was then printed on paper and fastened to the turntable

background. All the cluttered background sequences use the

same background image.

The captured images are of much higher resolution than

the ones used in the evaluation, so all images are down-

sampled. What is noted as scale equal to one in all tests is

the scale at which the objects were trained. Each evaluation

view is subjected to a random scaling between 1.3 and 0.7 as

well as a random image plane rotation between −180◦ and

180◦. For all scale values, downsampling from the original

high resolution images is used. All interpolations are done

by bi-cubic interpolation.

The vector of random scaling and rotation for each view

was created once and then reused for all objects and all

descriptors. This ensures a fair comparison. We also ran the

experiment several times with varying random vectors and

they, as far as we have seen, all give roughly the same results.

The error values presented in the experiment results are

distances between estimates and ground-truth. The two pose

angles are combined into a vector on the unit sphere so only

one value is presented. The error value is given by the space

angle between the vector for the ground-truth and the vector

for the measured pose angles. In the same plot as the object

state values, we show the measure of certainty.

We also show plots of the percentage of found descriptors

yielding good matches under the four constraints; correct

pose angles, correct pose angles and rotation, correct pose

angles and scale as well as full state estimate (pose angles,

scale and image rotation) correct. These plots can show if

there is a specific weak point of the method, e.g. if matching

descriptors or recovering rotation is a major weak point of the

method. Correct pose angle refers to the descriptor matching

to any of the 4 pose angles in the database closest to the

ground truth. Correct matches are, for evaluation purposes

labeled as good, and the remaining matches are labeled bad.

For scale and image plane rotation the matches needed to be

within ±0.1 and ±10◦ respectively of the ground-truth to be

considered as good.

The labeling allows us to measure the separation between

good and bad matches using Fisher’s quotient J given by

J = ‖µ(B) − µ(G)‖2/(σ2(B) + σ2(G)) (2)

were B and G are sets of Euclidean distances for bad and

good matches. The larger the separation between good and

bad matches the more distinctive the descriptors are.
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Fig. 5. Top: Error values for pose angles, image plane rotation and scale
as well as the certainty. Bottom: Match accuracy plots. Fraction of good
matches under the constraints pose, pose and rotation, pose and scale, and
full state (pose angles, scale and image rotation).

B. Results using Black Background

In figure 5 we present pose-estimation results for objects

on a black background. Each box-plot shows the first (x.25)

and third (x.75) quartile by the solid box surrounding the line

for the median (x.50). The whiskers are located at 1.5×IQR
above or below the first and third quartile, where IQR =
x.75−x.25. Any values outside of the whiskers are considered

as outliers. Outliers are not plotted, instead the number of

outliers are printed on the right of each box. These results are



based on 16 objects with 72 evaluation views each. As an aid

for comparison we have added dotted lines to the figures. The

position of the dotted lines is chosen as a rough maximum

of inaccuracies that a bin-picking application would tolerate

(2.5◦ for pose angle as well as image plane rotation and

±0.1 for scale). Descriptors with their medians within the

dotted lines will be marked in bold text to indicate an OK

result. For the plots on accuracy, only the best performer is

marked in bold text. From figure 5 we can see that most

features perform OK. Exceptions are SF, Spin and DI. The

best performer is PD closely followed by SIFT.

The bottom row of plots in figure 5 shows the percentage

of the found query descriptors that give good matches under

varying constraints on the meaning of good. This can be

seen as an approximation to matching the correct descriptor.

We can see that PD has the highest percentage of such

good matches so in terms of accuracy it performs best. The

singlet features SIFT, GLOH and SIFTH do well under the

constraint of pose angle, but fall behid when rotation and

scale are added. For interest-point based duplets, such as

PD, scale and rotation estimates become increasingly more

accurate the larger the point distance, as the primary noise

source is in feature location. For PDCC, which uses contours

instead of points, the advantage is less evident.

Table II shows the number of IPs detected for each local

descriptor as well as the value for the Fisher quotient to

show separation in matching distance for good versus bad

matches. The value J in the table is for the full state case.

Min is important for failure cases and max exposes uneven

#IP LP LPSI PD PDCC ST SIFT SURF

min 7 9 16 12 19 6 7
max 110 260 336 212 345 260 138
µ 32 63 96 61 117 54 42

σ/µ 0.50 0.54 0.50 0.56 0.44 0.65 0.52

J 0.15 0.21 0.62 0.3 0.082 0.46 0.28

#IP GLOH CC DI SC SIFTH Spin SF

min 1 1 1 1 1 1 1
max 255 266 266 1348 255 266 266
µ 48 54 54 308 48 54 54

σ/µ 0.63 0.61 0.61 0.64 0.63 0.61 0.61

J 0.19 0.12 0 0.03 0.2 0.08 0.04

TABLE II

BLACK BACKGROUNDS: IP & MATCHING STATISTICS.

computation requirements (e.g. true for SC). The mean (µ)

shows the expected number of features and σ/µ indicates

the reliability. As the images are similar in nature we would

prefer a similar number of features to be detected in all

images, and thus a low σ/µ value.

C. Results using Cluttered Background

In figure 6 we present the pose estimation results for a

cluttered background. The plots are presented in the same

way as for black background. In this experiment SF, Spin,

SIFTH, DI, CC, GLOH, SURF and ST have such poor

performance that they would be completely useless in the

application. For this reason figure 6 is scaled to focus on the

other methods and we can see that LPSI, PD and SIFT are
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Fig. 6. Pose errors with cluttered background.

within the required bounds. SC is not to be found in this and

the following tests since the binary had segmentation faults

for most images.

#IP LP LPSI PD PDCC ST SIFT SURF

min 59 73 189 130 195 107 48
max 661 1498 2013 2492 1974 1309 1556
µ 206 406 640 640 683 426 354

σ/µ 0.41 0.54 0.41 0.55 0.37 0.50 0.66

J 0.4 0.45 1.1 0.26 0.026 2.2 0.72

#IP GLOH CC DI SC SIFTH Spin SF

min 93 108 108 fail 93 108 108
max 1503 1628 1628 fail 1503 1628 1628
µ 408 452 452 fail 408 452 452

σ/µ 0.48 0.47 0.47 N/A 0.48 0.47 0.47

J 1.4 0.73 0 N/A 1.6 0.56 0.11

TABLE III

CLUTTERED BACKGROUNDS: IP & MATCHING STATISTICS.

Table III again shows statistics for the detected IPs and

for matching. Looking at table III we can see that the

discriminating power of SIFT is really good. Closest is

SIFTH, GLOH and PD.

V. SCALE CHANGE EXPERIMENT

To evaluate the robustness to scale change, we use a

sequence of images of object #14 captured with a different

camera and lens over the zoom range [0.37 2.85]. The

ground-truth has been produced by hand by analysing the

sequence frame by frame. The first and last images of the

scale change test are shown in the upper row of figure 7.

· · ·

Fig. 7. Top: First and last image in zoom test. Bottom: Random images
from moving light source test.

A. Scale Change Results

In figure 8 we see that the duplet PD does OK in

estimating the pose over the range of zoom, again likely



due to it being a duplet feature. PDCC and SIFT actually do

well for a large part of the zoom range.
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Fig. 8. Pose errors for zoom sequence. Certainty has been replaced with
an image position error measure.

VI. MOVING LIGHT SOURCE EXPERIMENT

To test robustness to light changes, an evaluation sequence

with images of object #14 under varying lighting conditions

was captured (with the same camera as in the zoom test).

During capture, a light source was moved around the object

by hand. Ground-truth was produced by hand for this test.

Example images with cut-outs from images in the light

change sequence can be seen in the bottom row of figure 7.

In [21], a resampling to a scale of 0.7 was used, here it is 1.

A. Moving Light Source Results

The results from this test are shown in figure 9. This test

is quite hard, as indicated by all descriptors showing quite

poor results, except PD which fails only slightly.
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Fig. 9. Pose errors for moving light source sequence. Certainty has been
replaced with an image position error measure.

VII. LIGHT CHANGE POSE ESTIMATION EXPERIMENTS

A second test for robustness to light changes uses object #5

from the first pose estimation test, but with two additional

light settings, both less extreme than in the moving light

test. Example images from each light setting can be seen in

figure 10. In this test we trained for each light setting and

then evaluated on the two other light settings. The evaluation

is done with both black and with cluttered background.

Fig. 10. Left to right: Ambient, left, and right illumination of object #5.

A. Light Change Results

The results for the light change experiments on black

background can be seen in figure 11. Only PDCC and SIFT

are useful here. ST, PD and LPSI just barely fail in this test.

From table IV we can see that SIFT and SURF are quite

descriminative which seems reasonable for SIFT as it also

has low error values in figure 11. SURF on the other hand,

performs quite poorly in spite of a high value for J. This is

evidence of a lot of matches just outside the limits for good

matches and that the matches outside of the limits are of

quite poor quality.
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Fig. 11. Error values for object states from light change experiment on
black background.

#IP LP LPSI PD PDCC ST SIFT SURF

min 32 66 96 58 102 56 31
max 113 275 339 188 348 278 138
µ 64 154 192 119 207 140 75

σ/µ 0.30 0.34 0.29 0.28 0.26 0.36 0.35

J 0.23 0.21 0.66 0.26 0.18 0.91 0.87

#IP GLOH CC DI SC SIFTH Spin SF

min 29 33 33 89 29 33 33
max 255 266 266 1367 255 266 266
µ 96 107 107 531 96 107 107

σ/µ 0.44 0.44 0.44 0.46 0.44 0.44 0.44

J 0.64 0.31 0 0.19 0.6 0.25 0.14

TABLE IV

LIGHT CHANGE ON BLACK BACKGROUND: IP & MATCHING STATISTICS.

Results with cluttered background can be found in fig-

ure 12 and table V. All the descriptors fail in this test

but PDCC remains the best performer. ST handled the

changing light on black background quite well but a cluttered

background once again proves too challenging for this low

dimensional descriptor. We see that the low dimensional

descriptors get a very poor separation between good and bad

matches. The same discussion about SIFT and SURF is true

for cluttered background as for black background.
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Fig. 12. Error values for object states from light change experiment on
cluttered background.

#IP LP LPSI PD PDCC ST SIFT SURF

min 101 166 321 224 342 196 86
max 305 663 945 854 957 730 415
µ 194 400 605 490 613 432 241

σ/µ 0.25 0.35 0.24 0.32 0.25 0.32 0.35

J 0.23 0.14 0.56 0 0.03 1.2 1.2

#IP GLOH CC DI SC SIFTH Spin SF

min 143 148 148 fail 143 148 148
max 611 684 684 fail 611 684 684
µ 343 384 384 fail 343 384 384

σ/µ 0.30 0.29 0.29 N/A 0.30 0.29 0.2943

J 0.58 0.24 0 N/A 0.67 0.12 0.05

TABLE V

LIGHT CHANGE ON CLUTTERED SCENE: IP & MATCHING STATISTICS.

VIII. CONCLUDING REMARKS

From our experiments we can note that patch duplet meth-

ods do well (PD and PDCC), whereas the singlet methods

do not (the exceptions are SIFT, that comes second in total,

and to some extent LPSI). The reason for this appears to be

that using two feature points allow more accurate estimates

of image plane rotation and scale (see text around figure 5).

The results for the moderate light changes (see figure 10)

in the second light change test showed that the PD variants,

SIFT and LPSI had the best performance. The large light

changes in the moving light source test (see figure 7) were

too difficult for most of the descriptors. In this test we found

that e.g. SIFT and PD extracted roughly the same amount of

descriptors (again roughly as many as for the same object in

the pose estimation test on black background), but SIFT had

a much lower percentage of its found descriptors voting for

the winning cluster than PD. This indicates that the descriptor

matching was harder for SIFT. A possible explanation for this

might be a less accurate scale estimate in the SIFT detector

(and thus more changes in the descriptors).

We can also conclude that affine covariant features [9] did

not do particularly well in our tests. It is possible that a

modified framework could change this. Such a modification

should use the affine deformation estimate as an additional

measurement. This is however not straightforward, and has

to be left for future work.

Finally we would like to stress that, in practise one should

not use just one feature for pose estimation. Instead, features

that do reasonably well in these tests should be used in

combination, using e.g. the multicue integration described

in [1].
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robotics,” Linköping University, Sweden, Thesis, April 2005.
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