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4. FILTERS WITH DISTRIBUTED ELEMENTS

4.1

The chain matrix of two cascaded two-ports is obtained by multiplying the individual chain matrices.
cosh(ydy) Zysinh(yd,)| |cosh(yd,) Zysinh(yd

K= |sinh(yd,) sinh(yd,) cosh(yd and we get
Z, Z V€

cosh(yd;)

cosh(y(dy +dy)) Zgsinh(y(d; +d;))
K = |«

E cosh(y(dy +d;))
0

where we have used the fact that
cosh(x; +X,) = cosh(xy)cosh(x,) + sinh(x;)sinh(x,) and

sinh(x; +Xx,) = sinh(x;)cosh(x,) + cosh(x;)sinh(x,)
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First we recognize that the input impedance to an open-ended lossless transmission line correspond to
a capacitor in the W-plane capacitor. Hence, we replace the capacitor as shown in the first step above.
Next we use the first Kuroda identity in Table 4.1 to change the order of the series W-inductor and the
transmission line. We get the new port resistances Ry = R| + R, and Ry = R, + R,%/R;. Again we
identify the Y-capacitor with a open-ended transmission line.

4.3
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First we recognize that the input impedance to an short-ended lossless transmission line correspond to
a Y-plane inductor. Hence, we replace the ¥-inductor as shown in the first step above. Next we use the
last Kuroda identity in Table 4.1 to change the order of the shunt W-capacitor and the transmission
line. We get the new port resistances Ry = R|Ry/(R| + R,) and Ry = R %/(R; + R,). Again we identify
the W-inductor with a short-circuited transmission line.

By repeatedly using Kuroda identities can any ladder structure be converted to a Richards’ structure
with the same input impedance. In fact, a Richards’ structure can realize any reactance function.
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From Example 4.5 we have for the original 7' ladder: Z; = Z3 = 3.85381-50 Q = 192.6905 Q and Z, =
0.3776909-50 Q = 18.884545 Q. We insert a UE between R and the first ¥-inductor with port
resistance R,. Next we use the last Kuroda identity in Table 4.1 to change the order of the element.
Z:Z 72
—CYE _50Qand Z; = —2E—
Ze+Zyg Ze+Zyg
yields Zyp = 242.6905 Q and Z = 62.97417 Q. Next we insert a UE between the last ¥-inductor and
the load resistor. We get using the first Kuroda identity Zjp = Z5+ R = 242.6905 Q and
R
Zo =R+ 7. = 62.97417 Q. Ws get the following characteristic resistances from left to right
3
using the notation in Figure 4.25: Z;, = 62.97417 Q, Ry = 242.6905 Q, Zs = 18.884545 Q, Rs =
242.6905 Q, and finally, Zg = 62.97417 Q. As expected there is symmetry in the elements and the
element spread is the same as in Example 4.5

We get from the Table mm = = 192.6905 Q. Solving

4.5

4.6

We perform the following simplifications steps: a) to d). We get L = Z;/n? and Z3 = Z,/n®. The circuit
in d) is a series resonance circuit

a 1 e— —e 4 b)

2. 17 ! z ‘

c)

Pa—

1 .

4.7

We select a Chebyshev I filter of order N =5 and realize it with a 7t ladder with the element values
C;=C5=1.7058, L, = L, = 1.2296, and C5 = 2.5408. We get after inserting two UE from each

side. Four shunt Y-capacitor-UE sections and a final shunt ¥-capacitor with the characteristic
impedances Z; = 2.5862, Z, = 0.4807, Z3 = 0.3936, Z, = 0.4807, and Z5 = 2.5862. We select the
length of the lines / = A/4. It is also possible to select / = A/8 which yields a shorter line. We have v, =

P
0.6¢ = 1.8 108 m/s. We select / = A/4 and get with fj = vylAg=3 GHz yields [ = v,/4fy = 15 mm.

4.8

A thid-order bandstop filter with center frequency 2.4 GHz and 3-dB bandwith is 50% can be realized
wih a third-order lowpass filter with cutoff frequency at 1.7 GHz when we assume that 7= 1/4.8 ns.
A third-order Butterworth ladder filter (7 type) with lumped element has the normalized element
values: Rg=R; =1,L;=L3= 1,and C, =2.
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The normalized lowpass T ladder have the following elements R, =R; =1, L; = L3 = 1.5963 and

C, = 1.0967. We get w, = 0.92.4-1092x = 1357168 1010 rad, w, = 1.12.4:1092x =
1.6587609 10'0 rad and Q. = we — w.; = 3.0159289 109 rad. Denormalize the LP filter with R = 50
Q, Lyp; = RL|/Q, = 26.464463 nH and Cypy = Co/RQ. = 7.2727178 pF. w? = sqrt(w,. wy) =
1.5004057 1010, We get for the bandpass filter L = Ly = L; p; = 26.464463 nH, C| = C3 = l/wL; p;
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=0.16784916 pF, Cy = C py = 7.2727178 pF, and L, = 1/w2Cy py = 0.61078147 nH.

This filter is obviously very difficult to implement with discrete components, since an inductor of 1 nH
corresponds to a wire with a length of about 1 mm.

Z, +jZytan(pd) )
4.10 Nmzav = gNo where Zy =50 Q, d =20 mm, Z; = 30 + j60 Q, f=2.4 GHz,
v,=0.6c=18108m/s, f = 22 = 0.0838 1/mm ==
Yp
30 +j60 + j50tan(0.0838 - 20) .
Z; (20) = - ~ 50 = 14.6929 - j26.6914 Q
in(20) 50 +j(30 +j60)tan(0.0838 - 20) J
12w+ 39°
4.11  Synthesize a Richards’ structure that realizes the reactance function Z = Bk A
2+ 13w?

Answer: The characteristic resistances are Z; = 1 Q, Z, =2 Q, Z3 = 3 Q and the last UE is terminated
with a short-circuit. The solution can be verified by

Den =[20 13 0];

Num = [0 12 08 3];

[z, K1, RL] = RICHARDS_REACTANCE(Num, Den)

The reactance can also be realized with an inductor (4 H) in parallel with a series resonance circuit
with C =27/32 Fand L =4/27 H.

4.12 A 50 ohm transmission line is loaded with a complex impedance: Z; = 30 + j60 Q. the transmission line

is operated at 2.4 GHz. Determine the length of this transmission line so that we have input impedance of the
transmission line equal to: Z;, = 30 — j60 Q.

71 =30 +j60, Z = 50, f = 2.4¢9
v=0.6%3 108 A =v/f, p = 2mi/
Zip = 30 60

Due to the equation 4.24 in the text book we have:

Ziy =2y (Z, + Zg tan(Bd)) / (Zy + z tan(Bd))

By re-ordering this equation we find:

d = (1/B)atan(Zy (2, — Z;,)(2,Z;, — Zp ) = 14.9 ¥10~3 meter
Plug in the values give the length (d):

d=14.9 mm
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