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The two-photon interferometric experiment proposed by J. D. Franson [Phys. Rev. Lett.62, 2205
(1989)] is often treated as a “Bell test of local realism.” However, it has been suggested that this
incorrect due to the50% postselection performed even in the ideal gedanken version of the experimen
Here we present a simple local hidden variable model of the experiment that successfully explains
results obtained in usual realizations of the experiment, even with perfect detectors. Furthermore,
also show that there isno such model if the switching of the local phase settings is done at a rate
determined by theinternal geometry of the interferometers.
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The two-particle interferometer introduced by Frans
[1] has been used in many two-photon interferomet
experiments [2,3] that reveal complementarity betwe
single and two-photon interference. The experiments c
not be described using standard methods involving c
sical electromagnetic fields [4]. However, the origin
paper was entitled “Bell Inequality for Position and Time
and many subsequent papers claimed that the experim
constitutes a “Bell test of local realism involving time an
energy.” Some authors were more skeptical that a tr
unambiguous test of a Bell inequality was possible w
these experiments, even in principle, since even the id
gedanken model of the experiment requires a postselec
procedure in which50% of the events are discarded whe
computing the correlation functions [5,6]. If all events a
taken into account the Bell inequalities are not violate
Thus, a local hidden variable (LHV) model is not rule
out, but even so, no LHV model for the experiment h
yet been constructed [7].

The situation is further obscured by similar claims co
cerning certain other two-photon polarization experime
[8] where the problem of discarding50% of the events
also appears [5,9]. This was initially treated on equ
footing with the problems of Franson-type experimen
but a recent analysis in [10] reestablishes the possibility
violating local realism. Unfortunately, that analysis ca
not be adapted to the Franson experiment.

Our aim is to resolve this uncertainty. First, we sha
construct a simple local realistic model for the usu
operational realization of the experiment. Second,
shall prove that under the additional condition that t
random changes of the state of the local interferome
are at a rate dictated by theinternal geometry of the
interferometers,no local hidden variable model exists fo
the perfect gedanken version of this type of experime
Even then, the usual Bell inequality will be inadequate.

Let us briefly describe the idea behind the Franso
type experiments (Fig. 1). The source yields photon pa
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correlated to within their coherence times, and the t
photons are fed into two identical unbalanced Mac
Zehnder interferometers. The difference of the optic
paths in those interferometers,DL , satisfies the relation
DL ¿ cTcoh, where c is the speed of light andTcoh
is the coherence time of the photons. Such optical p
differences prohibit any single-photon interference, so
single-photon probabilities areP�l jf� � P�m jc� � 1

2
(see Fig. 1). For the50% two-photon events that are
coincident (coinc.), one cannot distinguish between eve
where both photons take the long path and events wh
both take the short; hence, two-photon interference occ

P���l; m�coinc.� jf, c��� � 1
8 �1 1 lm cos�f 1 c�� . (1)

For the other half of the two-photon events, one phot
takes its short path and the other takes its long path
that the registration times differ byDL �c; there is conse-
quently no interference because the events are distingu
able. One hasP�lL; mE jf, c� � P�lE; mL jf,c� � 1

16 ,
where E denotes theearlier count, and L denotes thelater
count. For future reference, we note that the local ph
settings appearing in these formulas are those present w
a photon in the long path is passing through the ph
shifter, i.e., the phase setting at the actual detection t
td, minus the timetret it takes light to reach the detecto
from the location of the phase shifter by the optical pa
available within the interferometer.

Initially, the experiment is assumed to be perform
in the following way. The usual locality condition

FIG. 1. The generic setup of the Franson two-photon interf
ence experiment.
© 1999 The American Physical Society
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is imposed, i.e., the local phase setting at one side
does not affect the measurement result at the other
side. Experimentally, this is enforced by switching the
local phase settings on the time scale D�c, where D
is the source-interferometer distance. We assume that
D ¿ DL [11]. The two experimenters (one at each
side) record the 61 counts, the detection times, and the
appropriate values of the local phase settings. After the
experiment is completed they perform a postdetection
analysis on their recorded data, rejecting all pairs of
events whose registration times differ by DL �c. We now
present a LHV model for the Franson experiment, valid in
this experimental situation.

There are some general features that a LHV model of
the experiment should have. The emission time should be
one of the variables, because if the beam splitters of, say,
the right interferometer were removed, the photons would
be detected solely by the detector 11, and the detection
time tE would indicate the moment of emission. In this
case, for any local setting of the phase f, the detections
behind the left interferometer would either be coincident
with the detections on the right side at tE (we shall call
this an early detection), or delayed at tL � tE 1 DL �c
(a late detection). This must be determined by the LHV
model. Half of the events on the left side are early (E) and
half are late (L). With the right interferometer in place,
1�4 of the events are early on the left and late on the
right (EL), 1�4 are late on the left and early on the right
(LE), and 1�2 are coincident. These coincident events
must then consist of equal parts early-early (EE) and late-
late (LL) events; note that no such distinction exists in the
quantum description.

In our model, the hidden variables are chosen to be an
angular coordinate u [ �0, 2p� and an additional coordi-
nate r [ �0, 1�. The ensemble of hidden variables is cho-
sen as that of a uniform distribution in this rectangle in
�u, r� space; each pair of particles is then described by a
definite point �u, r� in the rectangle, defined at the source
at the moment of emission. At the left detector station,
FIG. 2. LHV model for detections at the left station. The
shifted value of the angular hidden variable, u0 � u 2 f, and
r, determine the result of the local observable, l � 61, and
whether the particle is detected early E or late L. The lower
curve in the left side of the chart is given by p

8 sinu0, and the
shape of the other curves are of similar form.

the measurement result is decided by the hidden variables
�u, r� and the local setting f of the apparatus. When a
photon arrives at the detection station, if the interferometer
works properly [12] the variable u is shifted by the current
setting of the local phase shifter (i.e., u0 � u 2 f), and
the result is read off Fig. 2. At the right detector station,
a similar procedure is followed [12,13]. In this case, the
shift is to the value u00 � u 1 c , and the result is obtained
in Fig. 3 in the same manner as before.

The single-particle detection probabilities straightfor-
wardly follow the quantum predictions, because in both
Figs. 2 and 3, the total areas corresponding to 11E, 21E,
11L, and 21L are all equal. The particle is equally likely
to arrive early or late, and equally likely to go to the 11
or 21 output port of the interferometer. The coincidence
probabilities are determined by interposing the two fig-
ures with the proper shifts. For example, the probability
of having l � 11E and m � 21E simultaneously is the
area of the set indicated in Fig. 4 divided by 2p (the to-
tal area is 2p whereas the total probability is 1). The net
coincidence probability is
P���11; 21�coinc.� jf, c��� � P�11E; 21E jf, c� 1 P�11L; 21L jf, c�

�
2

2p

Z f1c

0

p

8
sin�u� du �

1
8

�1 2 cos�f 1 c�� . (2)
It is easy to verify that this model also gives the correct
prediction for the other detection events.

Somewhat remarkably, the above construction implies
that the Franson experiment does not and cannot vio-
late local realism if one disregards the fact that the
unbalanced Mach-Zehnder interferometers are extended
objects. The reason that this construction is possible
is that the 50% postselection procedure discussed above
may yield an ensemble of detected pairs that depends on
the phase settings (rendering the Bell inequality useless
[14]). However, we shall now show that if the phase
switching is performed at the time scale DL �c, typical
for retardations within the interferometers, there is no
LHV description of the experiment. In particular, we
will describe an experimental procedure that allows us to
postselect an unchanging part of the LHV ensemble, thus
reenabling the Bell inequality on this part of the ensemble.

Let us look at one interferometer as an extended object
to establish what would take place if local realism were to
hold. In the interferometer, the decision of a detection to
occur early (at tE) or late (delayed by DL �c) cannot be
made later than the time tE. This decision is based on the
local variables and the properly retarded phase setting.
2873
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FIG. 3. The measurement result at the right station given
by the shifted hidden variables. The symbols have the same
meaning as in Fig. 2.

No phase setting after tE 2 tret can causally affect this
E�L choice [15]. The choice 61 is also based on the local
variables and the properly retarded phase setting at the
interferometer in question, but this choice may be made
as late as the detection time td (td � tE for early events or
td � tL � tE 1 DL �c for late). Therefore, in the case
of a late detection, the choice E�L and the choice 61 can
be made at different times (tE and tL, respectively) based
on possibly different phase settings.

Looking at only one interferometer, it is not possible to
discern early detections from late ones, so an experimenter
at that interferometer knows only the result 61, the
detection time td, and two possibly different phase settings
at td 2 DL �c 2 tret and td 2 tret. She also knows that
for the events that are late, the later of these two phase
settings cannot causally have affected the E�L decision,
so the hypothetical late subensemble does not depend on
the phase setting at td 2 tret but only on the phase setting
at the earlier time td 2 DL �c 2 tret. By rejecting events
where the phase setting at td 2 DL �c 2 tret does not
have a certain value (f0, say), she ensures that the late

FIG. 4. The shaded regions give the values for the initial
hidden variables for which l � 11E or m � 21E are obtained
(note that u0 � u 2 f while u00 � u 1 c). The overlap
region of length f 1 c represents the hidden variables for
which both l � 11E and m � 21E are obtained.
2874
subensemble does not change at all. To allow for settings
other than f0 at the later decision time, a device which
switches fast (on the time scale DL �c) and randomly
between phase settings is needed [16].

Thus, in the modified full experiment both experi-
menters should use fast devices that randomly switch be-
tween the phase settings f0,f1, . . . , fN on the left side and
c0, c1, . . . , cN on the right. They record the appropriate
data and reject (a) pairs of events whose registration times
differ by DL �c and (b) pairs of events which do not have
the feature that the phase setting at td 2 DL �c 2 tret
was f0 on the left and c0 on the right. The latter event
rejection ensures that the hypothetical LL subensemble
within the remaining data is independent of the phase set-
tings at td 2 tret. Then, if local realism holds, the Bell-
CHSH inequality applies to this LL subensemble,

jELL�f1,c1� 1 ELL�f2, c1�j 1

jELL�f2, c2� 2 ELL�f1, c2�j # 2 , (3)

where the phases are taken at td 2 tret, and ELL�f, c�
denotes the Bell-type conditional correlation function on
the remaining LL subensemble. This is valid only because
each of the correlation functions above is an average on the
same ensemble. Had the ensemble depended on the phase
settings at td 2 tret, the bound would have been higher.

Indeed, the remaining EE subensemble may still depend
on the phase setting at td 2 tret even after this selection,
and we only have

jEEE�f,c�j # 1 . (4)

Experimentally, this “noise” in the form of EE events
cannot be distinguished from the LL events. Of all events
that survive the described selection, again half are EE and
half are LL, so that

Ecoinc.�f, c� �
1
2

ELL�f, c� 1
1
2

EEE�f,c� . (5)

Thus, a modified Bell-CHSH inequality valid for all the
coincident events is implied by (3)–(5), namely,

jEcoinc.�f1, c1� 1 Ecoinc.�f2, c1�j 1

jEcoinc.�f2,c2� 2 Ecoinc.�f1, c2�j # 1
2 �2 1 4� � 3 .

(6)

Unfortunately, this inequality is not violated by the
conditional quantum correlation function E

QM
coinc.�f,c� �

cos�f 1 c� which yields a maximum of 2
p

2. However,
a violation may be obtained by a “chained” extension of
the Bell-CHSH inequality (see Ref. [17]):

jELL�f1,c1� 1 ELL�f2, c1�j 1

jELL�f2,c2� 1 ELL�f3, c2�j 1

jELL�f3, c3� 2 ELL�f1, c3�j # 4 . (7)
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If local realism holds, (4), (5), and (7) yield

jEcoinc.�f1, c1� 1 Ecoinc.�f2, c1�j 1 jEcoinc.�f2, c2� 1 Ecoinc.�f3,c2�j 1

jEcoinc.�f3, c3� 2 Ecoinc.�f1, c3�j #
1
2 �4 1 6� � 5 . (8)
This inequality is violated by quantum predictions, e.g., at
f1 � 0, f2 � 2p�3, f3 � 22p�3, c1 � p�6, c2 �
p�2, and c3 � 5p�6 we obtain

5 cos�p�6� 2 cos�5p�6� � 6 cos�p�6� � 5.20 . 5 .
(9)

In conclusion, to obtain a violation of local realism
in an experiment one needs random fast switching and
a filtering of the hypothetical late-late subensemble so
that this ensemble does not depend on the phase settings
[16]. Even then, the standard Bell inequalities are not
sensitive enough to show a violation of local realism in
the experiment, because their bound is raised by the noise
introduced by the early-early subensemble. However, a
“chained Bell inequality” may be used, which is violated
even with this noise included.

The reported violations of local realism from Franson
experiments have to be reexamined. While the results
formally violate the standard Bell-CHSH inequality, the
inequality is not applicable. The inequality (8) is applica-
ble, but when using it, one should note that it is violated
only if the visibility is more than 5�5.2 � 96%. This is
significantly higher than the usual 71% bound discussed
in the reported experiments [2,3].

It has been proposed that entangled photons can be
used to perform quantum cryptography [18]; specifically,
the Franson-type experiment has been discussed in this
context [3]. In such schemes security checks can be
performed by testing whether the signals violate the Bell
inequalities. It remains a subtle question if the link to
local realism is important for this kind of security check;
if so, the Bell-CHSH inequality is not appropriate for the
Franson setup.
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