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Bell Inequality for Position and Time
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The quantum-mechanical uncertainty in the position of a particle or the time of its emission is shown

to produce observable eAects that are inconsistent with any local hidden-variable theory. A new experi-
mental test of local hidden-variable theories based on optical interference is proposed.
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Einstein, Podolsky, and Rosen ' argued that those
properties of a system not precisely specified by the
quantum theory may have well-defined values deter-
mined by some additional variables in a more complete
theory Be.ll later showed that all local hidden-variable
theories are inconsistent with the quantum-theory pre-
dictions for the correlations between the spins or polar-
izations of two distant particles, which have now been
verified in a number of experiments. It has been pointed
out, however, that violations of Bell's inequality need not
be limited to spins or polarizations and that the existing
experiments are dependent upon various auxiliary as-
sumptions. As a result, there has been an interest in the
possibility of further experimental tests involving other
observables and larger spatial separations.

Ghosh and Mandel have recently observed nonlocal
efI'ects that correspond to interference between the prob-
ability amplitudes for the two ways in which a pair of
photons can travel from two slits to two detectors. Un-
fortunately, a test of Bell's inequality in those experi-
ments would also require the use of polarizers.

This paper derives a new violation of Bell's inequality
that is dependent upon interference between the proba-
bility amplitudes for a pair of photons to have been emit-
ted at various times by an excited atom. The results
show that the quantum-mechanical uncertainty associat-
ed with the usual wave-packet description of a particle is
inconsistent with any local hidden-variable theory. A
new experimental test based on optical interference is

proposed, with the interesting feature that the predicted
interference occurs for optical path differences much
larger than the usual (first-order) coherence length.

The inequality is based on the three-level system
shown in Fig. l. At time t=0 an atom is assumed to
have been excited into the upper state y~, which has a
relatively long lifetime zl. After emission of a photon y&

with wavelength X~, the atom will be in the intermediate
state yz, which has a relatively short lifetime z2«z&.
Thus a second photon y2 with wavelength k2 will be
emitted very soon after y~, and a coincidence counting
experiment would show a very narrow peak with a width

The final state y3 is assumed to either have a very
long lifetime z3 or to be the ground state. In principle,
yl and y2 could be any massless particles emitted by any
quantum system, since the results do not depend on their

properties. As a practical matter, atomic transitions fre-
quently do satisfy the condition z2 « z&.

Photons y~ and y2 are then collimated by lenses L&
and L2 into beams which propagate toward distant
detectors D& and D2, respectively, as illustrated in Fig. 2.
Spectral filters Fl and F2 transmit only wavelengths kl
and k2. Half-silvered mirrors M~, M~, M2, and M2 can
be inserted into the beams, but the situation without
those mirrors will be considered first.

In the absence of the half-silvered mirrors, the coin-
cidence counting rate will simply show a narrow peak in-
dicating that yl and y2 were emitted at times which were
the same to within a small uncertainty —z2. The
quantum-mechanical description of this process is highly
nonlocal, however, since the time at which either photon
was emitted was initially uncertain over a much larger
time interval —z~. As a result, the two photons must in-
itially be described by wave packets in which their time
of emission and thus their position is relatively uncertain.
The detection of one of the photons, say y~, immediately
determines the time of emission of the other photon and
thus its position to within a much smaller uncertainty,
which must be reflected by a nonlocal change in the wave
function describing the other photon. This nonlocal
reduction of the wave function is analogous to that which
occurs in the polarization measurements of Bell's origi-

FIG. 1. Three-level atomic system with a relatively long
lifetime rl for the initial state and a much shorter lifetime T2

for the intermediate state.
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FIG. 2. Photon coincidence measurements including interference between the amplitudes along the shorter paths, Sl and S2, and
the longer paths, Ll and L, 2.

nal theorem, but here the reduction affects the position
and time of emission rather than the polarization.

Although local theories do not allow such instantane-
ous changes in distant fields, the results could conceiv-
ably be consistent with some hidden-variable theory in

which the times of emission of the two photons were ac-
tually determined all along. The fact that single pho-
tons produce interference patterns over distances much
larger than crt suggests, however, that the wavelike na-
ture of the photon s cannot be neglected and that
hidden-variable theories may be incapable of describing
the situation in its entirety.

This will now be shown to be the case by considering
the modified coincidence experiment with the half-
silvered mirrors in place. M~ and M2 split the beams
equally into components which travel along either the
shorter paths to the detectors, St and S2, or the longer
paths, Li and Lq. The diA'erence AT in the transit times
via the longer and shorter paths is assumed to be the
same for both photons and is chosen to satisfy the condi-
tion

r2((h, T(( r) .

Phase-shift plates 4i and C&2 are used to introduce vari-
able phase shifts pi and pq into the two beams. Half-
silvered mirrors M~ and M2 recombine the two com-
ponents, with one set of recombined beams traveling to-
ward D~ and D2 as before. For simplicity, the detection
efticiencies will be assumed to be 1.0, in which case any
particles not detected in Di or Dq will be detected in Di
or D2 instead.

A calculation of the coincidence rates predicted by
quantum mechanics for this situation is complicated
somewhat by the fact that the localization of the parti-
cles in space and time requires the use of second-
quantized field operators. If the quantum system is as-
sumed to emit massless particles with no spin or polar-
ization, the relevant field operator is

+(r t) eiHrth+(r)e —iHilh (3)

where H is the Hamiltonian of the system. At t =0 the
particle field is in the vacuum state

~ 0), so that the prob-
ability amplitude to detect a particle at position r is sub-
sequently given by y(r, t )

~
0).

Although Eq. (3) can be explicitly solved using pertur-
bation theory, all of the necessary properties of the field
can be deduced from well-known and experimentally
verified phenomena. For example, once the particles
have been emitted, they simply propagate at the speed of
light toward the detectors, so that

y( +xctkt, t ) =y(x, t —At), (4)

where x is the distance from the source. In addition, the
fact that the coincidence rate is negligibly small for time
offsets much larger than ~2 requires that

yo(ri, t) yo(r2, t+'AT)
~
0) =0 (hT&& rp) .

Here ri and r2 are the locations of the detectors, which
are assumed to be equidistant from the source, and
yp(r, t) denotes the field operator with the half-silvered
mirrors removed.

With the mirrors inserted, the field at detector Di is
given by

where ak creates a particle with momentum k and Vis a
large volume containing the system. The derivation
which follows will be based on Eq. (2) instead of the
electric field operator appropriate for photons in order to
explicitly demonstrate the lack of dependence on the po-
larization and to simplify the notation somewhat. It
should be apparent, however, that the same results would
be obtained using the electric field operator.

It will be convenient to adopt the Heisenberg represen-
tation where the operators evolve in time while the states
remain constant, in which case the time-dependent field
operator is given by

ik r
y(r) =g ak,

k
(2)
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where use has been made of Eq. (4) and any phase shifts associated with the half-silvered mirrors have been included in
Similarly,

y(r2, r) =
2 y(i(r2, t)+ 2 e 'i//0(r2, t A—T) .

The coincidence rate R, between D( and D2 with the mirrors inserted can now be calculated from

ii ~ ii2&0 I y (r(, t ) i//" (r2, t ) i//(r2, t ) i//(r ~, r )
~ 0),

where g~ and T12 are the detection efficiencies of D& and D2. Making use of Eqs. (5)-(7) gives

R =
~g ii] T12(0

~ [lp(t(r~, t ) i//o (r2, t ) + e 'e 'i//J(r~, t —AT) y(t(r2, t AT)]—

(7)

x [y(i(r(, t)yo(r2t) +e 'e 'i//(i(r(, t AT)y—p(r2, t —AT)] ~0). (9)

For a time delay AT « r~, the amplitude to detect a pair of particles at time t AT w—ill be very nearly equal in mag-
nitude to the amplitude to detect a pair of particles at time t, and the two amplitudes will differ only by a constant
phase factor. This can be shown to be the case by writing the relevant part of the field operator at time t in the general
form

yo(rl, r ) yo(r2, r ) =g

hack

1 k2e e
ki k2

where the coefficients c«k2 are determined by Eq. (3). Then

po(r], t —AT)y(i(r2, t AT) =gg—ck( k2e' "' ' e' ' " ' e'
ki k2

But conservation of energy from the initial to final states
requires that be rewritten as

(io)

col+co2 = (El —E3)/6+Aco, (i2) AEAT/6+ iti)+y2
R, —

4 Rocos

l/p( /r r(AT) l/f (f0r 2AT)
I. (EI —E3h V /n=e ' '

i//p(r(, r)yo(r2, r) . (i4)

Equation (14) shows that the relative phase of these
two amplitudes is coherent, which gives rise to interfer-
ence in the coincidence rate despite the fact that the
difference in path lengths is larger than the usual (first-
order) coherence length. Inserting Eq. (14) into Eq. (9)
gives

—/(BEAT/8+&~+$2)] [I + i(BENT/h+4l+Pzi]
c
—

]6 O

(is)
where Ro is the coincidence rate with the half-silvered
mirrors removed and AE=E~ E3. Equation (15) can—

where E~ and Eq are the unperturbed energies of states

yl and y3, respectively. The uncertainty Aco in the sum
of the frequencies is due to the finite lifetimes of y& and

lp3 and is on the order of

1 1
AN — +

&1 &3

It is important to note that the uncertainty in co&+co2 is
much less than the individual uncertainty in either co~ or
m2, since the former is unaffected by the relatively short
lifetime of the intermediate state y2. For AT«r( and
AT« r3, Eq. (13) gives ANAT«1 and Eq. (11) reduces
to

=
4 Rocos (QI p2),

where p| and pz are defined by

AI =Pi/2,

p2 = —(iti2+AEAT/h)/2.
(i7)

The quantum-mechanical predictions of Eq. (16) im-

ply that the coincidence counts in the two detectors can
be either totally correlated or anticorrelated, depending
on the relative settings of the two phase shifters. The
form of R, in Eq. (16) is identical to that obtained in the
earlier polarization experiments based upon Bell' s

theorem, where &I and p2 correspond instead to the
orientation of distant polarizers. Bell's proof that no lo-
cal hidden-variable theory can be consistent with a coin-
cidence rate of this form is independent of the nature of
the adjustable parameters (t I and p2 associated with the
measurement apparatus. The same comments apply to
the form of the inequality derived by Clauser, Horne,
Shimony, and Holt, which is more suitable for experi-
mental tests. Thus the quantum-mechanical predictions
violate Bell's inequality and are inconsistent with any lo-
cal hidden-variable theory.

An actual experiment would have to take into account
the fact that Eq. (1) can only be satisfied approximately,
the mechanical stability required to hold h, T constant,
and the effects of collisions and Doppler shift, all of
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which are beyond the intended scope of this paper. In
the author s opinion the experiment is difficult but feasi-
ble.

The nonlocal results obtained above are clearly depen-
dent on interference between the probability amplitudes
for the pair of particles to have been emitted at two
diA'erent times and demonstrate that the times of emis-
sion cannot be thought of as being well determined by a
local hidden-variable theory. Similar comments apply to
the positions of the particles. Thus the uncertainties in-
herent in the usual wave-packet description of a particle
have measurable effects that are inconsistent with any lo-
cal hidden-variable theory.

Finally, it should be noted that one way in which a lo-
cal hidden-variable theory might fail to agree with the
quantum theory is to simply not satisfy Eq. (5) at large
distances from the source. In that case, the narrow coin-
cidence peak commonly observed over relatively short
distances would "wash out" if observed over much larger
distances. It has previously been noted that it may be
possible to describe these apparently nonlocal phenome-
na by a dynamic, local reduction of the wave function,
including a possible deterministic interpretation, ' if
phenomena of this kind were limited to relatively small
spatial separations. An experimental investigation of
these nonlocal phenomena in the limit of large spatial

separations would thus be of interest.
The author is grateful to J. S. Bell, L. Mandel, and A.

Shimony for their comments on the manuscript. This
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Research.
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