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Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance
in measurement
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Graduate School of Information Sciences, Toˆhoku University, Aoba-ku, Sendai, 980-8579, Japan
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The Heisenberg uncertainty principle states that the product of the noise in a position measurement and the
momentum disturbance caused by that measurement should be no less than the limit set by Planck’s constant
\/2 as demonstrated by Heisenberg’s thought experiment using ag-ray microscope. Here it is shown that this
common assumption is not universally true: a universally valid trade-off relation between the noise and the
disturbance has an additional correlation term, which is redundant when the intervention brought by the
measurement is independent of the measured object, but which allows the noise-disturbance product much
below Planck’s constant when the intervention is dependent. A model of measuring interaction with dependent
intervention shows that Heisenberg’s lower bound for the noise-disturbance product is violated even by a
nearly nondisturbing precise position measurement. An experimental implementation is also proposed to real-
ize the above model in the context of optical quadrature measurement with currently available linear optical
devices.
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I. THREE FORMULATIONS OF THE UNCERTAINTY
PRINCIPLE

The uncertainty principle has been known as one of
most fundamental principles in quantum mechanics. Ho
ever, there is still ambiguity in formulation; we have at lea
three different formulations of the ‘‘uncertainty principle.’’

The Robertson uncertainty relationis generally formu-
lated as the relation

s~A,c!s~B,c!>
u^cu@A,B#uc&u

2
~1!

for any observablesA, B, and any statec, where the standard
deviations(X,c) of an observableX in statec is defined by
s(X,c)25^cuX2uc&2^cuXuc&2. This relation was proven
mathematically from fundamental postulates of quantum m
chanics@1,2#. Nevertheless, this relation describes the lim
tation on preparing microscopic objects but has no dir
relevance to the limitation of accuracy of measuring devi
@3#.

It is a common understanding that the uncertainty pr
ciple in any formulation has a close logical relationship
the limitation on measuring a system without disturbing it
a position measurement typically disturbs the momentu
However, the limitation has eluded a correct quantitative
pression. By theg-ray thought experiment, Heisenberg@4,5#
argued that the product of the noise in a position meas
ment and the momentum disturbance caused by that m
surement should be no less than\/2. This relation is gener-
ally formulated as follows: For any apparatusA to measure
an observableA, the relation

e~A,c,A!h~B,c,A!>
u^cu@A,B#uc&u

2
~2!

holds for any input statec and any observableB, where
e(A,c,A) stands for the noise of theA measurement in stat
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c using apparatusA and h(B,c,A) stands for the distur-
bance ofB in statec caused by apparatusA. We refer to the
above relation as theHeisenberg noise-disturbance unce
tainty relation. We shall investigate the validity of this rela
tion to solve questions as follows. When does this relat
hold and when does it not? What relation can be conside
a universally valid generalization of this relation? How c
we experimentally observe the violation of this relation?

Closely related to the above relation, theHeisenberg un-
certainty relation for joint measurementsis generally formu-
lated as follows: For any apparatusA with two outputs for
the joint measurement ofA andB, the relation

e~A,c,A!e~B,c,A!>
u^cu@A,B#uc&u

2
~3!

holds for any input statec, wheree(X,c,A) stands for the
noise of theX measurement in statec using apparatusA for
X5A,B. This relation was proven mathematically@6–9# un-
der thejoint unbiasedness conditionrequiring that the~ex-
perimental! mean values of the outcomex of theA measure-
ment and the outcomey of the B measurement should
coincide with the~theoretical! mean values of observablesA
and B, respectively, on any input statec. It is a common
opinion that currently available measuring devices sati
this relation@10–12#.

There is a logical relationship between the nois
disturbance relation~2! and the joint measurement relatio
~3!. Assume that theA measurement using the apparatusA is
followed immediately by a measurement of the observablB
using a noiseless measuring apparatusB. Then, combining
the two apparatus, we have a new apparatusC to jointly
measureA andB on the input state of apparatusA. SinceB
carries out a noiseless measurement on its own input s
©2003 The American Physical Society05-1
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the noise ofB measurement in the outcome of apparatusC is
equal to theB disturbance caused by apparatusA. Thus, we
have the relations

e~A,c,A!5e~A,c,C!, ~4a!

h~B,c,A!5e~B,c,C!. ~4b!

By applying the uncertainty relation for joint measureme
to the apparatusC, we can conclude that the noise
disturbance relation~2! holds if apparatusC satisfies the
joint unbiasedness condition for observablesA andB. How-
ever, there are two deficiencies of the above approach~i!
Even for noiseless measuring apparatusA to measureA, one
cannot ensure that the combined apparatusC satisfies the
joint unbiasedness condition.~ii ! The above argument doe
not give a universally valid trade-off relation between no
and disturbance. Thus, we can conclude that the validity
the noise-disturbance relation~2! cannot be reduced to th
current formulation of the Heisenberg uncertainty relat
for joint measurements~3!.

II. MEASUREMENT NOISE AND DISTURBANCE

Now, let us analyze noise and disturbance in the m
general description of measurement@13–15# in detail. LetA
be a measuring apparatus with~macroscopic! output variable
x to measure an observableA of a quantum systemS. Then,
apparatusA measures observableA precisely if and only if
the ~experimental! probability distribution of x coincides
with the ~theoretical! probability distribution ofA; or rigor-
ously the probability of the event that the outputx of appa-
ratusA is in an intervalD satisfies theBorn statistical for-
mula for observableA, i.e.,

Prob$xPD%5^cuEA~D!uc& ~5!

on every input statec, whereEA(D) stands for the spectra
projection ofA corresponding to intervalD. Otherwise, we
consider apparatusA to measure observableA with some
noise. In order to evaluate the noise, we need to describe
measuring process. The measuring interaction is suppos
turn on at a timet, the time of measurement, and to turn o
at timet1Dt between the objectS and a quantum subsyste
P, called theprobe, of the ~large! apparatusA. Denote byU
the unitary operator representing the time evolution of
composite systemS1P for the time interval (t,t1Dt). We
assume that the object and any part of the apparatus do
interact beforet nor aftert1Dt. At the time of measuremen
the object is supposed to be in an arbitrary statec and the
probe is in a fixed statej. Thus, the composite systemS
1P is in the statec ^ j at time t. Just after the measurin
interaction has turned off, the probe is subjected to a pre
local measurement of an observableM of the probe, called
theprobe observable, and its output is recorded by the outp
variablex. In the Heisenberg picture with the original sta
c ^ j at time t, we write Ain5A^ I , Min5I ^ M , Aout

5U†(A^ I )U, andMout5U†(I ^ M )U. Since the output of
this measurement is obtained by the precise measureme
04210
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observableM at time t1Dt, the probability distribution of
the output variablex is given by

Prob$xPD%5^EMout
~D!&, ~6!

where^•••& stands for̂ c ^ ju•••uc ^ j& throughout this pa-
per.

Thenoisee(A,c,A), or e(A) for short, of theA measure-
ment on input statec using apparatusA is defined as the
root-mean-square deviation of the experimental varia
Mout from the theoretical variableAin, i.e.,

e~A,c,A!5^~Mout2Ain!2&1/2. ~7!

Then, we can prove thate(A)50 on any input statec if and
only if apparatusA measures observable A precisely. This
ensures that ‘‘precise apparatus’’ and ‘‘numerically noisel
apparatus’’ are equivalent.

Let B be an observable ofS. Thedisturbanceh(B,c,A),
or h(B) for short, of observableB on input statec caused by
apparatusA is defined as the root-mean-square of the cha
in the observableB during the measuring interaction, i.e.,

h~B,c,A!5^~Bout2Bin!2&1/2. ~8!

Then, we can prove thath(B)50 on any input statec if and
only if apparatusA does not change the probability distribu

tion of the observable B, i.e., ^EBin
(D)&5^EBout

(D)& for ev-
ery interval D on any input statec. Thus, apparatus no
disturbing the observableB and apparatus with zero distu
bance@h(B)[0# are equivalent notions. It should be als
noted that the above definitions of noise and disturbance
consistent with the standard formulation for the Heisenb
uncertainty relation for joint measurements, Eq.~3!, with Eq.
~4!. Thus, the above definitions of noise and disturbance
be considered standard.

III. UNIVERSALLY VALID UNCERTAINTY RELATIONS

Under the above general definitions of noise and dis
bance, we can rigorously investigate the validity of t
Heisenberg noise-disturbance uncertainty relation, Eq.~2!.
For this purpose, we introduce thenoise operator N(A) and
the disturbance operator D(B) by

Mout5Ain1N~A!, ~9!

Bout5Bin1D~B!. ~10!

SinceM andB are observables in different systems, we ha
@Mout,Bout#50, and hence we have the following comm
tation relation for the noise operator and the disturbance
erator:

@N~A!,D~B!#1@N~A!,Bin#1@Ain,D~B!#52@Ain,Bin#.
~11!

Taking the modulus of means of both sides and applying
triangular inequality, we have
5-2
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UNIVERSALLY VALID REFORMULATION OF THE . . . PHYSICAL REVIEW A 67, 042105 ~2003!
u^@N~A!,D~B!#&u1u^@N~A!,Bin#&1^@Ain,D~B!#&u

>u^cu@A,B#uc&u. ~12!

Since the variance is not greater than the mean square
have

e~A,c,A!>s~N~A!,c ^ s!, ~13!

h~B,c,A!>s~D~B!,c ^ s!, ~14!

and hence by the Robertson uncertainty relation, Eq.~1!, we
have

e~A!h~B!>
u^@N~A!,D~B!#&u

2
. ~15!

Thus, we obtain theuniversally valid noise-disturbance un
certainty relationfor the pair (A,B),

e~A!h~B!1
u^@N~A!,Bin#&1^@Ain,D~B!#&u

2

>
u^cu@A,B#uc&u

2
. ~16!

The above relation shows that the Heisenberg no
disturbance uncertainty relation, Eq.~2!, holds if the corre-
lation term u^@N(A),Bin#&1^@Ain,D(B)#&u vanishes. In or-
der to characterize a class of measurements satisfying
~2!, we introduce the following definition. The measurin
interaction is said to be ofindependent interventionfor the
pair (A,B) if the noise and the disturbance are independ
of the object system; or precisely if there is observableN
and D of probe P such thatN(A)51^ N and D(B)51
^ D. In this case, we have@N(A),Bin#5@Ain,D(B)#50.
Therefore, we conclude thatif the measuring interaction U is
of independent intervention for the pair(A,B), the Heisen-
berg noise-disturbance uncertainty relation for the pa
(A,B), Eq. ~2!, holds for any object statec and any probe
statej. A similar assertion was previously suggested in p
by Braginsky and Khalili@16# without conceivable justifica-
tions.

The universally valid uncertainty relation shows that f
measurements of dependent intervention, the lower boun
the noise-disturbance product depends on the premea
ment uncertainties~standard deviations! of A andB. In order
to obtain the trade-off among the noisee(A), the disturbance
h(B), and the premeasurement uncertaintiess(A) and
s(B), we apply the Robertson uncertainty relation, Eq.~1!,
to all terms in the left-hand side of the universally va
noise-disturbance uncertainty relation, Eq.~16!. Then, we
obtain thegeneralized noise-disturbance uncertainty re
tion,

e~A!h~B!1e~A!s~B!1s~A!h~B!>
u^cu@A,B#uc&u

2
.

~17!
04210
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The above relation holds for any apparatusA ~specified by
any probe statej, any unitary operatorU, and any probe
observableM ), any observablesA,B, and any input statec,
and hence ultimately generalizes the Heisenberg no
disturbance uncertainty relation, Eq.~2!, to arbitrary mea-
surements.

Under the finite energy constraint, i.e.,s(Q), s(P),`,
the above relation excludes the possibility of having bo
e(Q)50 andh(P)50. However,e(Q)50 is possible with
s(Q)h(P)>\/2; and also h(P)50 is possible with
e(Q)s(P)>\/2. In particular, even the case wheree(Q)
50 and h(P),« with arbitrarily small « is possible for
some input state withs(Q).\/(2«), and also the case
where h(P)50 and e(Q),« is possible for some inpu
state withs(P).\/(2«). Such extreme cases occur in com
pensation for large uncertainties in the input state, while
the minimum uncertainty state withs(Q)5s(P)
5(\/2)1/2, we have

e~Q!h~P!1A\

2
@e~Q!1h~P!#>

\

2
. ~18!

Even in this case, it is allowed to havee(Q)h(P)50 with
e(Q)50 and h(P)>(\/2)1/2 or with h(P)50 and e(Q)
>(\/2)1/2.

IV. VIOLATION OF THE HEISENBERG INEQUALITY

Now let us consider the problem as to whether one
implement, under the current experimental technique, a g
measuring apparatus with small noise-disturbance prod
beyond the original Heisenberg lower bound. The cont
versy @17# on the sensitivity limit of gravitational wave de
tectors suggested that the Heisenberg noise-disturbance
certainty relation is not universally valid. In fact, based
the Heisenberg noise-disturbance uncertainty relation, B
ginsky and co-workers@18,19# claimed that there is a sens
tivity limit, called the standard quantum limit~SQL!, for
monitoring the free-mass position that leads to a quantu
mechanical sensitivity limit on interferometer-type gravit
tional wave detectors. However, Yuen@20# proposed the idea
of ‘‘contractive state measurements’’ to break the SQL, a
eventually in Ref.@21# the present author found an explic
Hamiltonian realization of a contractive state measurem
that breaks the SQL~see also Ref.@22#!. Consequently, the
above measuring interaction violates the Heisenberg no
disturbance uncertainty relation. Direct computaions on
position-measuring niose and momentum disturbance
also shown the violation of the Heisenberg noise-disturba
uncertainty relation@23#.

In what follows, modifying the above interaction in th
context of optical quadrature measurement, it will be sho
that the small noise-disturbance product can be achieved
yond Heisenberg’s lower bound by an apparatus carrying
a precise and nearly nondisturbing quadrature measurem
with currently available linear optical devices.

V. BACKACTION EVADING QUADRATURE AMPLIFIERS

Consider the case where the systemS and the probeP are
two optical modes represented by annihilation operatora
5-3
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MASANAO OZAWA PHYSICAL REVIEW A 67, 042105 ~2003!
and b, respectively. The quadrature component field ope
tors Xa , Ya , Xb , Yb are self-adjoint operators satisfyinga
5Xa1 iYa and b5Xb1 iYb , for which we have@Xa ,Ya#
5 i /2 and@Xb ,Yb#5 i /2.

A measuring interactionU on S1P is called abackaction
evading (BAE) quadrature amplifier@24# with gain G if we
have

Xa
out5Xa

in , ~19a!

Xb
out5Xb

in1GXa
in , ~19b!

Ya
out5Ya

in2GYb
in , ~19c!

Yb
out5Yb

in . ~19d!

In order to measureXa , the probe observable is chosen be
to beM5Xb /G. Then we have

Mout5Xa
in1

1

G
Xb

in . ~20!

The Xa-noise operator, theXa-disturbance operator, and th
Ya-disturbance operator are given by

N~Xa!5
1

G
Xb

in , ~21a!

D~Xa!50, ~21b!

D~Ya!52GYb
in . ~21c!

The conditionD(Xa)50 is characteristic of BAE amplifiers
If the probe is prepared nearly in theXb eigenstateuXb
50&, the measurement is a nearly noiseless@e(Xa)'0# and
nondisturbing@h(Xa)50# measurement ofXa . From the
above, BAE amplifiers are of independent intervention
the pair (Xa ,Ya). Thus, the Heisenberg noise-disturban
uncertainty relation for the pair (Xa ,Ya) holds. If theb mode
is prepared in the vacuum,j5u0&, the noise and disturbanc
satisfy e(Xa)51/2 andh(Ya)51/2, so that the minimum
noise-disturbance product attains ase(Xa)h(Ya)51/4.

VI. NOISELESS QUADRATURE TRANSDUCERS

Consider the following input-output relations:

Xa
out5Xa

in2Xb
in , ~22a!

Xb
out5Xa

in , ~22b!

Ya
out52Yb

in , ~22c!

Yb
out5Yb

in1Ya
in . ~22d!

In this case, the measuring interactionU is called thenoise-
less quadrature transducer. In order to measureXa , the
probe observable is chosen to beM5Xb . TheXa-noise op-
erator, theXa-disturbance operator, and theYa-disturbance
operator are given by
04210
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N~Xa!50, ~23a!

D~Xa!52Xb
in , ~23b!

D~Ya!52~Ya
in1Yb

in!. ~23c!

The conditionN(Xa)50 is characteristic of the noiseles
transducer. Hence, the measurement is a noiselessXa mea-
surement regardless of the probe preparationj. From Eq.
~23b!, if the probe is prepared nearly in theXb eigenstate
uXb50&, the measurement is a noiseless@e(Xa)50# and
nearly nondisturbing@h(Xa)'0# measurement ofXa . Since
e(Xa)50, we have

e~Xa!h~Ya!50 ~24!

for any statesc andj, so that Heisenberg’s lower bound fo
the noise-disturbance product can be overcome by a no
less and nearly nondisturbing quadrature measuremen
one can implement a noiseless quadrature transducer.
above model also suggests that the linearity of measu
interaction does not ensure the validity of the Heisenb
noise-disturbance uncertainty relation, despite a prevai
claim that linear measurements, measurements closely
nected to linear systems, obey the Heisenberg no
disturbance uncertainty relation@16#.

VII. EXPERIMENTAL REALIZATION OF THE
NOISELESS QUADRATURE TRANSDUCERS

The noiseless quadrature transducer can be implemen
in principle, as follows. Consider two degenerate modesa,
the signal, andb, the probe, with frequencyv and orthogonal
polarization, which undergo successive parametric inter
tions in the following five steps; see Refs.@24–28# for simi-
lar implementations of BAE amplifiers.

~i! The two polarization modes undergo a mixing intera
tion using a polarization rotator which rotates the angle
polarization byu. The operation of the polarization rotator
represented by the mixing operator

T~u!5exp@u~ab†2a†b!#. ~25!

~ii ! The mixture of the signal and the probe fields w
propagate along each of the ordinary and orthogonal extr
dinary axis of a potassium-titanyl-phosphate crystal pum
by a pulsed intense classical field. This interaction is a n
degenerate parametric amplifier described by the two-m
squeeze operator

S~r !5exp@r ~ab2a†b†!#, ~26!

wherer corresponds to the squeezing parameter.
~iii ! After the amplification step, the fields pass through

second polarization rotator with the mixing angle 2u so that
the operation is represented byT(2u)5T(u)2.

~iv! The mixture of the signal and the probe fields und
goes the second parametric amplification described by
two-mode squeeze operatorS(2r ).
5-4
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~v! After the second amplification step, the fields pa
through a third polarization rotator with the mixing angleu
so that the operation is represented byT(u).

Thus, this process defines the measuring interaction
erator

U~r ,u!5T~u!S~2r !T~u!T~u!S~r !T~u!. ~27!

We shall determine the parametersu and r for U(r ,u) to
realize a noiseless quadrature transducer, Eq.~22!. Suppose
that u and r satisfies the relation sin 2u5tanhr. In this case,
it is well known @24–28# that the unitary operatorU2

5T(u)S(2r )T(u) realizes the BAE quadrature amplifie
with G52 sinhr, i.e.,

U2
† XaU25Xa , ~28a!

U2
† XbU25Xb12~sinhr !Xa , ~28b!

U2
† YaU25Ya22~sinhr !Yb , ~28c!

U2
† YbU25Yb . ~28d!

Similarly, the unitary operatorU15T(u)S(r )T(u) realizes
the conjugate BAE quadrature amplifier, i.e.,

U1
† XaU15Xa22~sinhr !Xb , ~29a!

U1
† XbU15Xb , ~29b!

U1
† YaU15Ya , ~29c!

U1
† YbU15Yb12~sinhr !Ya . ~29d!

Combining the above equations, we have the input-ou
relations for the unitary operatorU(r ,u)5U2U1 ,

U~r ,u!†XaU~r ,u!5Xa22~sinhr !Xb , ~30a!

U~r ,u!†XbU~r ,u!5~124 sinh2r !Xb12~sinhr !Xa , ~30b!

U~r ,u!†YaU~r ,u!5~124 sinh2r !Ya22~sinhr !Yb , ~30c!

U~r ,u!†YbU~r ,u!5Yb12~sinhr !Ya . ~30d!

Thus, if sinhr51/2, i.e.,
,
.

04210
s
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r 5 ln
11A5

2
~31a!

u5
1

2
sin21

1

A5
, ~31b!

the resulting unitary operatorU5U(r ,u) realizes the noise-
less quadrature transducer, Eq.~22!.

Thus, if r and u are chosen as Eq.~31!, steps~i!–~v!
realize the noiseless quadrature transducer. Therefore,
process followed immediately by the precise homodyne
tection of theXb component implements a nearly nondistur
ing and noiseless measurement of theXa quadrature compo-
nent that disturbs the conjugate observableYa much less
than the quantum limit set by Heisenberg’s lower bound
the noise-disturbance product,e(Xa)h(Ya)>1/4.

VIII. CONCLUSION

In this paper, relations have been proposed,~16! and~17!,
that are universally valid for the trade-off between the m
surement noise and disturbance. These relations demons
that the prevailing Heisenberg lower bound for the noi
disturbance product is valid for measurements with indep
dent intervention, but can be circumvented by a measu
ment with dependent intervention. An experimen
confirmation of the violation of Heisenberg’s lower bound
proposed for a measurement of optical quadrature with c
rently available techniques in quantum optics. The relat
will not only bring an insight on fundamental limitations o
measurements set by quantum mechanics but also adva
frontier of precision measurement technology such as gr
tational wave detection and quantum information process
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