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Information causality as a physical principle
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Quantum physics has remarkable distinguishing characteristics.
For example, it gives only probabilistic predictions (non-
determinism) and does not allow copying of unknown states
(no-cloning1). Quantum correlations may be stronger than any
classical ones2, but information cannot be transmitted faster than
light (no-signalling). However, these features do not uniquely
define quantum physics. A broad class of theories exist that share
such traits and allow even stronger (than quantum) correlations3.
Here we introduce the principle of ‘information causality’ and
show that it is respected by classical and quantum physics but
violated by all no-signalling theories with stronger than (the
strongest) quantum correlations. The principle relates to the
amount of information that an observer (Bob) can gain about a
data set belonging to another observer (Alice), the contents of
which are completely unknown to him. Using all his local
resources (which may be correlated with her resources) and allow-
ing classical communication from her, the amount of information
that Bob can recover is bounded by the information volume (m) of
the communication. Namely, if Alice communicates m bits to Bob,
the total information obtainable by Bob cannot be greater than m.
For m 5 0, information causality reduces to the standard no-
signalling principle. However, no-signalling theories with maxi-
mally strong correlations would allow Bob access to all the data in
any m-bit subset of the whole data set held by Alice. If only one bit
is sent by Alice (m 5 1), this is tantamount to Bob’s being able to
access the value of any single bit of Alice’s data (but not all of
them). Information causality may therefore help to distinguish
physical theories from non-physical ones. We suggest that
information causality—a generalization of the no-signalling con-
dition—might be one of the foundational properties of nature.

Classical (as opposed to quantum) physics rests on the assumption
that all physical quantities have well-defined values simultaneously.
Relativity is based on clear-cut physical statements: the speed of light
and the electric charge are the same for all observers. In contra-
distinction, the definition of quantum physics is still a description
of its formalism: the theory in which systems are described by Hilbert
spaces and dynamics is reversible. This situation is all the more un-
expected because quantum physics is the most successful physical
theory and quite a lot is known about it. Some of its counterintuitive
features are almost popular knowledge: all scientists, and many laymen
as well, know that quantum physics predicts only probabilities, that
some physical quantities (such as position and momentum) cannot be
simultaneously well defined and that the act of measurement generi-
cally modifies the state of the system. Entanglement and no-cloning are
rapidly claiming their place in the list of well-known quantum features;
in next place are the feats of quantum information such as the
possibility of secure cryptography4,5 or the teleportation of unknown
states6.

These features are so striking that one could hope that some of
them provide the physical ground behind the formalism. Is quantum

physics, for instance, the most general theory that allows violations of
Bell inequalities, while satisfying no-signalling? When this question
was investigated3 the answer was found to be negative: impossibility
of being represented in terms of local variables is a property shared by
a broad class of no-signalling theories. Such theories predict intrinsic
randomness, no-cloning7,8 and an information-disturbance trade-
off9 and permit secure cryptography10–12. As regards teleportation
and entanglement swapping13, after a first negative attempt14, it seems
that they can also be defined within the general no-signalling frame-
work15,16. In summary, most of the features that have been high-
lighted as ‘typically quantum’ are shared by all possible no-
signalling theories. Only a few discrepancies have been noticed: some
no-signalling theories would lead to an implausible simplification of
distributed computational tasks17–20 and would have very limited
dynamics21. This highlights the importance of the no-signalling
principle but leaves us still uncertain about the specificity of quantum
theory.

Here we define and study a previously unnoticed feature, which we
call ‘information causality’. Information causality generalizes no-
signalling and is respected by both classical and quantum physics.
However, as we shall show, it is violated by all no-signalling theories
that are endowed with correlations that are stronger than the strongest
quantum correlations. It can therefore be used as a principle to dis-
tinguish physical theories from non-physical ones and is a good can-
didate for one of the foundational assumptions that are at the very
root of quantum theory.

Formulated as a principle, information causality states: ‘‘the
information gain that Bob can reach about a previously unknown
to him data set of Alice, by using all his local resources and m classical
bits communicated by Alice, is at most m bits’’. The standard no-
signalling condition is just information causality for m 5 0. The prin-
ciple assumes classical communication: if quantum bits were allowed
to be transmitted, the information gain could be higher, as demon-
strated in the quantum super-dense coding protocol22. The efficiency
of this protocol is based on the use of quantum entanglement, and
information causality holds true even if the quantum bits are trans-
mitted provided that they are disentangled from the systems of the
receiver. This follows from the Holevo bound, which limits informa-
tion gain after transmission of m such qubits to m classical bits.

We show that in a world in which certain tasks are ‘too simple’
(compare with refs 17, 18) and there exists implausible accessibility
of remote data, information causality is violated. Consider a generic
situation in which Alice has a database of N bits described by a string~aa.
She would like to grant Bob access to as big a portion of the database as
possible within a fixed amount of classical communication. If there
were no pre-established correlations between them, communication
of m bits would open access to at most m bits of the database. With
previously shared correlations they could expect to do better (however,
as we show here, in the real world they would be mistaken). For
concreteness, consider a generic task illustrated in Fig. 1. It is a
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distributed version of random access coding23,24, oblivious transfer14,25

and related communication complexity problems26. Alice receives a
string of N random and independent bits, ~aa~ a0, a1, . . . , aN{1ð Þ.
Bob receives a random value of b 5 0, …, N 2 1 and is asked to give
a value of the bth bit of Alice after receiving from her a message of m
classical bits. The restrictions are only on the communication that can
take place after the inputs have been provided. The resources that Alice
and Bob may have shared in advance are assumed to be no-signalling
because allowing signalling resources would open other communica-
tion channels. In a classical world, these additional resources would be
correlated lists of bits; in a quantum world, Alice and Bob may share an
arbitrary quantum state. However, the task itself is open to accom-
modate any hypothetical resource producing no-signalling correla-
tions, even those that go beyond the possibilities of quantum
physics. We shall call these imaginary resources no-signalling boxes,
or NS-boxes for short. The impact of stronger-than-quantum correla-
tions on the efficiency of random access coding has been studied
recently from a different angle24.

There exists a protocol that allows Bob to give the correct value of at
least m bits. If Alice sends him an m-bit message~xx~ a0, . . . , am{1ð Þ
Bob will guess ab perfectly whenever b[ 0, . . . , m{1f g. The price to
pay is that he is bound to make a completely random guess for
b[ m, . . . , N{1f g. Because the previously shared correlations con-
tain no information about~aa, for every strategy there will be a trade-off
between the probabilities for guessing different bits of~aa. Let us denote
Bob’s output by b. The efficiency of Alice’s and Bob’s strategy can be
quantified by

I:
XN{1

K~0

I aK : b bj ~Kð Þ ð1Þ

where I(aK : bjb 5 K) is the Shannon mutual information between aK

and b, computed under the condition that Bob has received b 5 K.
One can also show that

I§N{
XN{1

K~0

h PKð Þ ð2Þ

where h(x) 5 2x log2 x 2 (1 2 x) log2 (1 2 x) is the binary entropy of
x, and PK is the probability that aK 5 b, again for the case of b 5 K. To
obtain the inequality, the aK have been assumed to be unbiased and
independently distributed (details are given in Supplementary
Information).

Ideally, we wish to define that information causality holds if, after
transfer of the m-bit message, the mutual information between Alice’s
data~aa and everything that Bob has—that is, the message~xx and his part
B of the previously shared correlation—is bounded by m. Intuitively
appealing though such a definition is, it has the severe issue that it is
not theory-independent. Specifically, a mutual information expres-
sion ‘I ~aa :~xx, Bð Þ’ has to be defined for a state involving objects from
the underlying theory (the possibilities include classical correlation, a

shared quantum state and NS-boxes). It is far from clear whether
mutual information can be defined consistently for all non-local cor-
relations, nor whether such a definition would be unique.

Instead, we shall show that if a mutual information can be defined
that obeys certain elementary properties, then (a) information caus-
ality holds and (b) I ~aa :~xx, Bð Þ§I . Thus we obtain the following neces-
sary condition for information causality:

Iƒm ð3Þ

We stress that the parameter I is independent of any underlying
physical theory: I does not involve any details of a particular physical
model but is fully determined by Alice’s and Bob’s input bits and
Bob’s output. In this sense it resembles Bell’s parameter2, which also
involves only random variables and can be used to test different
physical theories.

For a system composed of parts A, B and C, prepared in a state allowed
by the theory, we need to assign symmetric and non-negative mutual
informations I(A : B), etc. The elementary properties mentioned above
are the following. First, consistency: if the subsystems A and B are both
classical, then I(A : B) should coincide with Shannon’s mutual informa-
tion. Second, data-processing inequality: acting on one of the parts
locally by any state transformation allowed in the theory cannot
increase the mutual information. That is, if B R B9 is a permissible
map between systems, then I(A : B) $ I(A : B9). This says that any local
manipulation of data can only decay information. Third, a chain rule:
there exists a conditional mutual information I(A : BjC) such that the
following identity is satisfied for all states and triples of parts:
I(A : B, C) 5 I(A : C) 1 I(A : BjC). This implies an identity between
ordinary mutual informations:

I A:B, Cð Þ{I A:Bð Þ~I A:B Cjð Þ~I A, C :Bð Þ{I B :Cð Þ

Information causality holds in both classical and quantum physics;
we may focus on the latter because the former is a special case of it.
This is because one can define quantum mutual information in a
formal extension of Shannon’s quantity, using von Neumann
entropy27, and all three of the above properties are fulfilled28. Details
are given in Supplementary Information, but in brief one argues as
follows.

To show (a), denote by B Bob’s quantum system holding the shared
quantum state rAB, Alice’s data ~aa~ a0, . . . , aN{1ð Þ, and the m-bit
message~xx; our objective is to prove that I ~aa :~xx, Bð Þƒm. First, the chain
rule for mutual information yields I ~aa :~xx, Bð Þ~I ~aa :Bð ÞzI ~aa :~xx Bjð Þ.
Second, I ~aa :Bð Þ~0 because without the message Alice’s data and
Bob’s quantum state are independent (expressing the no-signalling
condition). Third, we use the chain rule again to express the conditional
mutual information as I ~aa :~xx Bjð Þ~I ~xx :~aa, Bð Þ{I ~xx :Bð ÞƒI ~xx :~aa, Bð Þ.
Finally, the latter can be upper-bounded by I ~xx :~xxð Þƒm, invoking data
processing. Similarly, (b) is obtained by repeated application of the
chain rule, data-processing inequality and non-negativity of mutual
information (details are given in Supplementary Information).

To study how other no-signalling theories can violate information
causality, we focus on the necessary condition in equation (3). First
consider the simplest example of two-bit input by Alice, (a0, a1); it is
described in Fig. 2. The probability that Bob correctly gives the value
of the bit a0 is

PI~
1

2
P A+B~0 0, 0jð ÞzP A+B~0 1, 0jð Þ½ � ð4Þ

and the analogous probability for the bit a1 reads

PII~
1

2
P A+B~0 0, 1jð ÞzP A+B~1 1, 1jð Þ½ � ð5Þ

where the symbol › denotes summation modulo 2.
One can recognize that these probabilities are intimately linked

with the Clauser–Horne–Shimony–Holt parameter29 S, which can be
used to quantify the strength of correlations. Indeed,

a0, a1, ..., aN–1 b = 0, ..., N – 1

(m classical bits)

ab

Figure 1 | The task. Alice receives N random and independent bits
~aa~ a0, . . . , aN{1ð Þ. In a separate location, Bob receives a random variable
b[ 0, 1, . . . , N{1f g. Alice sends m classical bits to Bob, with the help of
which Bob is asked to guess the value of the bth bit in Alice’s list, ab. Alice and
Bob can share any no-signalling resources. Information causality limits the
efficiency of solutions to this task. It bounds the mutual information
between Alice’s data and all that Bob has at hand after receiving the message.
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S~
X1

a~0

X1

b~0

P A+B~ab a, bjð Þ~2 PIzPIIð Þ ð6Þ

The classical correlations are bounded by S # SC 5 3 (the equiva-
lent form of Bell’s inequality2,29). Quantum correlations exceed this
limit up to SƒSQ~2z

ffiffiffi
2
p

(the so-called Tsirelson bound30). The
maximal algebraic value of SNS 5 4 is reached by the Popescu–
Rohrlich (PR) box3, which is an extremal no-signalling resource.
PR-boxes maximally violate information causality because they
predict PI 5 PII 5 1; that is, I 5 2 for m 5 1, so here occurs an
extreme violation of information causality. Bob can learn either bit
perfectly. I 5 2 measures the sum total of the information accessible
to Bob. However, he cannot learn both of Alice’s bits—the latter
would imply signalling.

The protocol works just as well for any Boolean function of the
inputs, f ~aa, bð Þ. It is sufficient that Alice inserts to her PR-box the sum
f ~aa, 0ð Þ+f ~aa, 1ð Þ. If information causality is maximally violated, Bob
can learn the value of f ~aa, bð Þ for any one of his inputs, irrespective of
Alice’s input data. Even more surprisingly, this is also true if he does
not know the function to be computed.

We shall now demonstrate that information causality is violated as
soon as the quantum Tsirelson limit for the CHSH inequality is
exceeded. This result of ours can be also seen as an information-
theoretic proof of the Tsirelson bound, independently of the formalism
of Hilbert spaces, relying instead only on the existence of a consistent
information calculus for certain correlations.

First we note that, using a suitable local randomization procedure
that does not change the value of the parameter S, any NS-box can be
brought to a simple form7: the local outcomes are uniformly random
and the correlations are given by

P A+B~ab a, bjð Þ~ 1

2
1zEð Þ ð7Þ

with 0 # E # 1. The case E 5 1 corresponds to the PR-box; E 5 0
describes uncorrelated random bits. The classical bound S # SC is

violated as soon as Ew
1
2
; the Tsirelson bound of quantum physics

becomes EƒEQ~ 1ffiffi
2
p , attained by performing suitable measurements

on the singlet state of two two-level systems2,30.
The bound that information causality imposes on correlations can

be identified by using a pyramid of NS-boxes and nesting the simple

protocol described above. Now Alice receives N 5 2n bits, and corre-
spondingly Bob receives n input bits bn, which describe the index of
the bit he is interested in, b~

P
n{1
k~0 bk2k . Alice is allowed to send a

single bit, m 5 1. An example of this protocol for n 52 is presented in
Fig. 3. Generally, Alice and Bob use a pyramid of N 2 1 pairs of boxes
placed on n levels. Looking at the binary decomposition of b,
Bob aims (n 2 r) times at the left bit and r times at the right,
where r 5 b0 1 … 1 bn21. His final guess is the sum of b 5

x › B0 › … › Bn21. Bob’s final guess is therefore correct whenever
he has made an even number of errors in the intermediate steps. This
leads to the equation

PK ~
1

2
1zEn½ � ð8Þ

for the probability of his correct final guess (the details of this cal-
culation are given in Supplementary Information).

Inserting this expression into equation (1), one finds that the
information causality condition I # 1 is violated as soon as 2E2 . 1
and n is large enough; that is, E . EQ. Because all NS-boxes can be
brought to the form in equation (7) without changing the value of S,
we conclude indeed that every NS-box with stronger than quantum
correlations violates the information causality condition. In
Supplementary Information the more general result is proved, that
for any 1

2
E2

I zE2
II

� �
wE2

Q where Ej 5 2Pj 2 1 (see equations (4) and
(5)), information causality is violated, and conversely that if it is
fulfilled there exists a quantum correlation with these probabilities.

Here we have identified the principle of information causality,
which precisely distinguishes physically realized correlations from
non-physical ones (in the sense that quantum mechanics cannot
reach them). It is phrased in operational terms and in a theory-
independent way; we therefore suggest that it is at the same founda-
tional level as the no-signalling condition itself, of which it is a
generalization.

The new principle is respected by all correlations accessible with
quantum physics and excludes all no-signalling correlations, which
violate the quantum Tsirelson bound. Among the correlations that
do not violate that bound it is not known whether information

a0, a1 b = 0, 1

ab = x ⊕ B

a0 ⊕ a1

A

b

B

x = a0 ⊕ A
(1 classical bit)

Figure 2 | Van Dam’s protocol17. This is the simplest case in which
information causality can be violated (see also ref. 25). Alice receives two bits
(a0, a1) and is allowed to send only one bit to Bob. A convenient way of
thinking about no-signalling resources is to consider paired black boxes
shared between Alice and Bob (NS-boxes). The correlations between inputs
a, b 5 0, 1 and outputs A, B 5 0, 1 of the boxes are described by probabilities
P(A › B 5 ab | a, b). The no-signalling is satisfied because of uniformly
random local outputs. With suitable NS-boxes Alice and Bob violate
information causality. She uses a 5 a0 › a1 as an input to the shared NS-box
and obtains the outcome A, which is used to compute her message bit
x 5 a0 › A for Bob. Bob, on his side, inputs b 5 0 if he wants to learn a0, and
b 5 1 if he wants to learn a1; he gets the outcome B. On receiving x from
Alice, Bob computes his guess b 5 x › B 5 a0 › A › B. The probability
that Bob correctly gives the value of the bit a0 is
PI~

1
2 P A+B~0 0, 0jð ÞzP A+B~0 1, 0jð Þ½ �, and the analogous probability

for the bit a1 reads PII~
1
2 P A+B~0 0, 1jð ÞzP A+B~1 1, 1jð Þ½ �, which

follow by inspection of the different cases.

a0 ⊕ a1a

AL⊕ a0 ⊕ a2 ⊕ AR

b

k = 0k

k = 1k

a2 ⊕ a3

A

B0

b0

b1

B1

Figure 3 | Information causality identifies the strongest quantum
correlations. Alice receives N 5 2n input bits and correspondingly Bob
receives n input bits bn, which describe the index of the bit he is interested in,
b~

P
n{1
k~0 bk2k. Alice is allowed to send a single bit, m 5 1. a, For n 5 2, to

encode information about her data Alice uses a pyramid of NS-boxes. Note
that Fig. 2 shows how Bob can correctly guess the first or second bit Alice has
using a single pair of the boxes (the case of n 5 1). If Alice has more bits, then
they recursively use this protocol in the following way. For example, for four
input bits of Alice, two pairs of NS-boxes on the level k 5 0 allow Bob to
make the guess of a value of any one of Alice’s bits as soon as he knows either
a0 › AL or a2 › AR, where AL and AR are the output of her left and right
boxes, respectively, on the level k 5 0, which are the one-bit messages of the
protocol in Fig. 2. These can be encoded using the third box, on the level
k 5 1, by inserting their sum to Alice’s box and sending x 5 a0 › AL › A to
Bob (A is the output of her box on the level k 5 1). Depending on the bit he is
interested in, he now reads a suitable message using the box on the level k 5 1
and uses one of the boxes on the level k 5 0. b, An example of a situation in
which Bob aims at the value of a2 or a3. Bob’s final answer is x › B0 › B1,
where Bk is the output of his box on the kth level.
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causality singles out exactly those allowed by quantum physics. If it
does, the new principle would acquire even stronger status.
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