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On the reality of the quantum state
Matthew F. Pusey1*, Jonathan Barrett2 and Terry Rudolph1

Quantum states are the key mathematical objects in quantum theory. It is therefore surprising that physicists have been
unable to agree on what a quantum state truly represents. One possibility is that a pure quantum state corresponds directly to
reality. However, there is a long history of suggestions that a quantum state (even a pure state) represents only knowledge or
information about some aspect of reality. Here we show that any model in which a quantum state represents mere information
about an underlying physical state of the system, and in which systems that are prepared independently have independent
physical states, must make predictions that contradict those of quantum theory.

At the heart of much debate concerning quantum theory
lies the quantum state. Does the wavefunction correspond
directly to some kind of physical wave? If so, it is an

odd kind of wave, as it is defined on an abstract configuration
space, rather than the three-dimensional space in which we live.
Nonetheless, quantum interference, as exhibited in the famous
two-slit experiment, seems most readily understood by the idea
that it is a real wave that is interfering. Many physicists and
chemists concernedwith pragmatic applications of quantum theory
successfully treat the quantum state in this way.

Many others have suggested that the quantum state is something
less than real1–8. In particular, it is often argued that the quantum
state does not correspond directly to reality, but represents an
experimenter’s knowledge or information about some aspect of
reality. This view ismotivated by, amongst other things, the collapse
of the quantum state on measurement. If the quantum state is a
real physical state, then collapse is a mysterious physical process,
whose precise time of occurrence is not well defined. From the
‘state of knowledge’ view, the argument goes, collapse need be no
more mysterious than the instantaneous Bayesian updating of a
probability distribution on obtaining new information.

The importance of these questions was eloquently stated by
Jaynes:

But our present (quantum mechanical) formalism is not purely
epistemological; it is a peculiar mixture describing in part
realities ofNature, in part incomplete human information about
Nature—all scrambled up by Heisenberg and Bohr into an
omelette that nobody has seen how to unscramble. Yet we think
that the unscrambling is a prerequisite for any further advance
in basic physical theory. For, if we cannot separate the subjective
and objective aspects of the formalism, we cannot know what we
are talking about; it is just that simple.9

This Article presents a no-go theorem: if the quantum state
merely represents information about the real physical state
of a system, then experimental predictions are obtained that
contradict those of quantum theory. The argument depends on few
assumptions. One is that a system has a ‘real physical state’—not
necessarily completely described by quantum theory, but objective
and independent of the observer. This assumption only needs
to hold for systems that are isolated, and not entangled with
other systems. Nonetheless, this assumption, or some part of
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it, would be denied by instrumentalist approaches to quantum
theory, wherein the quantum state is merely a calculational tool
for making predictions concerning macroscopic measurement
outcomes. The other main assumption is that systems that are
prepared independently have independent physical states.

To make some of these notions more precise, let us begin by
considering the classical mechanics of a point particle moving in
one dimension. At a given moment of time, the physical state of the
particle is completely specified by its position x and momentum p,
and hence corresponds to a point (x,p) in a two-dimensional phase
space. Other physical properties are either fixed, such as mass or
charge, or are functions of the state, such as energyH (x,p). Viewing
the fixed properties as constant functions, let us define ‘physical
property’ tomean some function of the physical state.

Sometimes, the exact physical state of the particle might be
uncertain, but there is nonetheless a well-defined probability
distribution µ(x,p). Although µ(x,p) evolves in a precise manner
according to Liouville’s equation, it does not directly represent
reality. Rather, µ(x,p) is a state of knowledge: it represents an
experimenter’s uncertainty about the physical state of the particle.

Now consider a quantum system. The hypothesis is that the
quantum state is a state of knowledge, representing uncertainty
about the real physical state of the system. Hence assume some
theory or model, perhaps undiscovered, that associates a physical
state λ with the system. If a measurement is made, the probabilities
for different outcomes are determined by λ. If a quantum system
is prepared in a particular way, then quantum theory associates
a quantum state (assume for simplicity that it is a pure state)
|ψ〉, but the physical state λ need not be fixed uniquely by the
preparation—rather, the preparation results in a physical state λ

according to some probability distributionµψ (λ).
Given such a model, Harrigan and Spekkens10 give a precise

meaning to the idea that a quantum state corresponds directly to
reality or represents only information. To explain this, the example
of the classical particle is again useful. Here, if an experimenter
knows only that the system has energy E , and is otherwise
completely uncertain, the experimenter’s knowledge corresponds
to a distribution µE(x,p) uniform over all points in phase space
with H (x,p) = E . As the energy is a physical property of the
system, different values of the energy E and E ′ correspond to
disjoint regions of phase space, hence the distributions µE(x,p)
and µE ′(x,p) have disjoint supports. On the other hand, if two
probability distributions µL(x,p) and µL′(x,p) have overlapping
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Figure 1 | Physical properties. Our definition of a physical property is
illustrated. Consider a collection, labelled by L, of probability distributions
{µL(λ)}. λ denotes a system’s physical state. a, If every pair of distributions
are disjoint, then the label L is uniquely fixed by λ and we call it a physical
property. b, If, however, L is not a physical property, then there exists a pair
of labels L,L′ with distributions that both assign positive probability to
some overlap region ∆. A λ from ∆ is consistent with either label.

supports, that is there is some region ∆ of phase space where both
distributions are non-zero, then the labels L and L′ cannot refer to
a physical property of the system (Fig. 1).

Similar considerations apply in the quantum case. Suppose
that, for any pair of distinct quantum states |ψ0〉 and |ψ1〉, the
distributions µ0(λ) and µ1(λ) do not overlap: then, the quantum
state |ψ〉 can be inferred uniquely from the physical state of
the system and hence satisfies the above definition of a physical
property. Informally, every detail of the quantum state is ‘written
into’ the real physical state of affairs. But if µ0(λ) and µ1(λ) overlap
for at least one pair of quantum states, then |ψ〉 can justifiably be
regarded as ‘mere’ information.

Our main result is that for distinct quantum states |ψ0〉 and
|ψ1〉, if the distributionsµ0(λ) andµ1(λ) overlap (more precisely: if
∆, the intersection of their supports, has non-zero measure), then
there is a contradiction with the predictions of quantum theory.We
present first a simple version of the argument, which works when
|〈ψ0|ψ1〉|= 1/

√
2. Then the argument is extended to arbitrary |ψ0〉

and |ψ1〉. Finally, we present amore formal version of the argument,
whichworks even in the presence of experimental error andnoise.

Consider two methods of preparing a quantum system,
corresponding to quantum states |ψ0〉 and |ψ1〉, with |〈ψ0|ψ1〉| =

1/
√
2. Choose a basis of the Hilbert space so that |ψ0〉 = |0〉 and

|ψ1〉=|+〉= (|0〉+|1〉)/
√
2. To derive a contradiction, suppose that

the distributions µ0(λ) and µ1(λ) overlap. Then there exists q> 0
such that preparation of either quantum state results in a λ from the
overlap region∆with probability at least q.

Now consider two systems whose physical states are uncor-
related. This can be achieved, for example, by constructing and
operating two copies of a preparation device independently. Each
system can be prepared such that its quantum state is either |ψ0〉 or
|ψ1〉, as illustrated in Fig. 2. With probability q2> 0 it happens that
the physical states λ1 and λ2 are both from the overlap region ∆.
This means that the physical state of the two systems is compatible
with any of the four possible quantum states |0〉⊗ |0〉, |0〉⊗ |+〉,
|+〉⊗|0〉 and |+〉⊗|+〉.

The two systems are brought together and measured. The
measurement is an entangledmeasurement, which projects onto the
four orthogonal states:

|ξ1〉=
1
√
2
(|0〉⊗|1〉+|1〉⊗|0〉)

|ξ2〉=
1
√
2
(|0〉⊗|−〉+|1〉⊗|+〉)

|ξ3〉=
1
√
2
(|+〉⊗|1〉+|−〉⊗|0〉)

|ξ4〉=
1
√
2
(|+〉⊗|−〉+|−〉⊗|+〉) (1)
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Figure 2 | The protocol. Two systems are prepared independently. The
quantum state of each, determined by the preparation method, is either |0〉
or |+〉. The two systems are brought together and measured. The outcome
of the measurement can only depend on the physical states of the two
systems at the time of measurement.

where |−〉 = (|0〉 − |1〉)/
√
2. The first outcome is orthogonal to

|0〉 ⊗ |0〉, hence quantum theory predicts that this outcome has
probability zero when the quantum state is |0〉 ⊗ |0〉. Similarly,
outcome |ξ2〉 has probability zero if the state is |0〉⊗ |+〉, |ξ3〉 if
|+〉 ⊗ |0〉, and |ξ4〉 if |+〉 ⊗ |+〉. This leads immediately to the
desired contradiction. At least q2 of the time, the measuring device
is uncertain which of the four possible preparation methods was
used, and on these occasions it runs the risk of giving an outcome
that quantum theory predicts should occur with probability 0.
Importantly, we have needed to say nothing about the value of q
per se to arrive at this contradiction.

We have shown that the distributions for |0〉 and |+〉 cannot
overlap. If the same can be shown for any pair of quantum states
|ψ0〉 and |ψ1〉, then the quantum state can be inferred uniquely from
λ. In this case, the quantum state is a physical property of the system.

For any pair of distinct non-orthogonal states |ψ0〉 and |ψ1〉, a
basis of the Hilbert space can be chosen such that

|ψ0〉= cos(θ/2)|0〉+ sin(θ/2)|1〉

|ψ1〉= cos(θ/2)|0〉− sin(θ/2)|1〉 (2)

with 0< θ < π/2. These states span a two-dimensional subspace
of the Hilbert space. We can restrict attention to this subspace
and from here on, without loss of generality, treat the systems
as qubits. As above, suppose that there is a probability at least
q > 0 that the physical state of the system after preparation is
compatible with either preparation method having been used, that
is, the resulting λ is in ∆.

A contradiction is obtained when n uncorrelated systems are
prepared, where n will be fixed shortly. Depending on which of
the two preparation methods is used each time, the n systems are
prepared in one of the quantum states

|9(x1 ...xn)〉= |ψx1〉⊗···⊗|ψxn−1〉⊗|ψxn〉 (3)

where xi ∈ {0,1}, for each i. As the preparations are independent,
there is a probability at least qn that the complete physical state of
the systems emerging from the devices is compatible with any one
of these 2n quantum states. The contradiction is obtained if there is
a joint measurement on the n systems such that each outcome has
probability zero on at least one of the |9(x1 ...xn)〉. (This type of
measurement was first introduced in a different context by Caves,
Fuchs and Schack11; in their terminology, the existence of such a
measurement shows the states are post-Peierls incompatible.)
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Figure 3 | The circuit. The main argument requires a joint measurement
on n qubits with the property that each outcome has probability zero
on one of the input states. Such a measurement can be made by
implementing the quantum circuit shown, followed by a measurement of
each qubit in the computational basis. The single-qubit gates are given by
Zβ = |0〉〈0|+eiβ |1〉〈1| and the Hadamard gate H= |+〉〈0|+|−〉〈1|. The
entangling gate in the middle rotates the phase of only one state:
Rα |00...0〉= eiα |00...0〉, leaving all other computational basis
states unaffected.

A suitable measurement is most easily described as a quantum
circuit, followed by a measurement onto the {|0〉,|1〉} basis for each
qubit. It is illustrated in Fig. 3.

The circuit is parameterized by two real numbers, α and β. In
Supplementary Information it is shown that for any 0< θ < π/2,
and for any n chosen large enough that 21/n− 1≤ tan(θ/2), it is
possible to choose α and β such that the measurement has the
desired feature: each outcome has, according to quantum theory,
probability zero on one of the states |9(x1 ...xn)〉.

The presentation so far has been somewhat heuristic. We turn
to a more formal statement of the result, including the possibility
of experimental error. This is important because the argument so
far uses the fact that quantum probabilities are sometimes exactly
zero. It is important to have a version of the argument that is robust
against small amounts of noise. Otherwise the conclusion—that the
quantum state is a physical property of a quantum system—would
be an artificial feature of the exact theory, but irrelevant to the real
world, and experimental test would be impossible.

Let us restate our assumptions more mathematically. First,
assume a measure space Λ, understood as the set of possible
physical states λ in which a system can be. Preparation of the
quantum state |ψi〉 is assumed to result in a λ sampled from a
probability distribution µi(λ) over Λ. Second, assume that it is
possible to prepare n systems independently, with quantum states
|ψx1〉, ... , |ψxn〉, resulting in physical states λ1, ... ,λn distributed
according to the product distribution

µx1(λ1)µx2(λ2)···µxn(λn) (4)

Finally, assume that λ1, ... , λn fixes the probability for the
outcome k of a measurement according to some probabil-
ity distribution p(k|λ1, ... , λn). The operational probabilities
p(k|9(x1 ...xn)) are given by∫

Λ

···

∫
Λ

p(k|λ1,...,λn)µx1(λ1)···µxn(λn)dλ1 ···dλn (5)

If an experiment is carried out, it will be possible to establish
with high confidence that the probability for each measurement
outcome is within ε of the predicted quantum probability for some
small ε >0. The final result relates ε to the total variation distance12
between µ0 and µ1, defined by

D(µ0,µ1)=
1
2

∫
Λ

|µ0(λ)−µ1(λ)|dλ (6)

It is a measure of how easy it is to distinguish two probability
distributions. If D(µ0,µ1) = 1, then µ0 and µ1 are completely
disjoint. In this case, the probability of λ being compatible with both
preparations (q above) is zero. In Supplementary Information we
show that if the probabilities predicted by a model are within ε of
the quantum probabilities then

D(µ0,µ1)≥ 1−2 n
√
ε (7)

for 21/n−1≤ tan(θ/2). For small ε, D(µ0,µ1) is close to 1. Hence
a successful experiment would show that λ is normally closely
associated with only one of the two quantum states.

Carrying out an experiment to implement the circuit in Fig. 3
for small values of n is challenging but not unrealistic given
current technology. Whereas all the gates required have already
been demonstrated at some point, our result requires such gates
acting with high fidelity in a non-postselected fashion (this latter
because otherwise the measuring device can use the extra freedom
in the postselection to escape the zero-probability outcomes those
times it is unsure of the preparation procedure).

In conclusion, we have presented a no-go theorem, which—
modulo assumptions—shows that models in which the quantum
state is interpreted as mere information about an objective physical
state of a system cannot reproduce the predictions of quantum
theory. The result is in the same spirit as Bell’s theorem13, which
states that no local theory can reproduce the predictions of quantum
theory. Both theorems need to assume that a systemhas an objective
physical state λ such that probabilities for measurement outcomes
depend only on λ. But our theorem only assumes this for systems
prepared in isolation from the rest of the universe in a quantum
pure state. This is unlike Bell’s theorem, which needs to assume
the same thing for entangled systems. Neither theorem assumes
underlying determinism.

Bell’s theorem assumes that it is possible to make independent
choices of measurement, and as local models that drop mea-
surement independence can be constructed14,15 this assumption is
necessary. Somewhat analogously, models where the quantum state
is not a physical property can be constructed by dropping our
assumption of preparation independence16. As both assumptions
are very reasonable, it is not surprising that in both cases themodels
obtained by dropping them seem extremely contrived.

An important step towards the derivation of our result is the
idea that the quantum state is physical if distinct quantum states
correspond to non-overlapping distributions for λ. The precise
formalization of this idea appeared in the work of Spekkens17 and
of Harrigan and Spekkens10, and is also due to L. Hardy (private
communication). In the terminology of Harrigan and Spekkens,
we have shown that ψ-epistemic models cannot reproduce the
predictions of quantum theory. The general notion that two distinct
quantum states may describe the same state of reality, however, has
a long history. For example, in a letter to Schrödinger containing
a variant of the famous Einstein–Podolsky–Rosen argument1,
Einstein argues from locality to the conclusion that ‘. . . for the same
(real) state of (the system at) B there are two (in general arbitrarily
many) equally justified 9B, which contradicts the hypothesis of a
one-to-one or complete description of the real states’.18

In this version of the argument, Einstein really is concerned with
the possibility that there are two distinct quantum states for the
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same reality. He is not concluding that there are two different states
of reality corresponding to the same quantum state (which would
be the more commonly understood notion of incompleteness
associated with Einstein).

Finally, what are the consequences if we simply accept
both the assumptions and the conclusion of the theorem? If
the quantum state is a physical property of a system then
quantum collapse must correspond to a—problematic and poorly
defined—physical process. If there is no collapse, on the other
hand, then after a measurement takes place the joint quantum
state of the system and measuring apparatus is entangled and
contains a component corresponding to each possible macroscopic
measurement outcome. This would be unproblematic if the
quantum state merely reflected a lack of information about which
outcome occurred. However, if the quantum state is a physical
property of the system and apparatus, it is hard to avoid the
conclusion that each macroscopically different component has a
direct counterpart in reality.

On a related but more abstract note, the quantum state has the
striking property that the number of real parameters needed to spec-
ify it is exponential in the number of systemsn. This is to be expected
if the quantum state represents information, but is—to us—very
surprising if it has a direct image in reality. Note that, in previous
work, it has been shown that the set Λ of physical states must have
infinite cardinality19, and that, given some assumptions about the
underlying dynamics, the physical state must have at least as many
real parameters as the quantum state20,21. Similar conclusions can
be drawn from ideas in communication complexity22.

For these reasons and others, many will continue to view the
quantum state as representing information. One approach is to
take this to be information about possible measurement outcomes,
and not about the objective state of a system23. Another is to
construct concrete models of reality wherein one or more of
our assumptions fail.
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